
Dual-Core Update
to the Intel® Itanium® 2 Processor
Reference Manual
For Software Development and Optimization

Revision 0.9

January 2006

Document Number: 308065-001

2 Reference Manual for Software Development and Optimization

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Itanium 2 processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

The code name “Montecito” presented in this document is only for use by Intel to identify a product, technology, or service in development, that has not
been made commercially available to the public, i.e., announced, launched or shipped. It is not a “commercial” name for products or services and is
not intended to function as a trademark.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel's web site at http://www.intel.com.

Intel, Itanium, Pentium, VTune and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Copyright © 2006, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Notice: This document contains information on products in the design phase of development. The information here is subject to change without
notice. Do not finalize a design with this information.

Contents
1 Introduction...9

1.1 Terminology...9
1.2 Related Documentation...9

2 The Dual-Core Itanium 2 Processor...11
2.1 Overview ...11

2.1.1 Identifying the Dual-Core Itanium 2 Processor.......................................11
2.1.2 Introducing Montecito ...12

2.2 New Instructions..14
2.3 Core...15

2.3.1 Instruction Slot to Functional Unit Mapping..15
2.3.2 Instruction Latencies and Bypasses...17
2.3.3 Caches and Cache Management Changes ...18

2.4 Threading ..20
2.4.1 Sharing Core Resources ..21
2.4.2 Tailoring Thread Switch Behavior ..23
2.4.3 Sharing Cache and Memory Resources ..24

2.5 Dual Cores ..25
2.5.1 Fairness and Arbitration ...27

2.6 Intel® Virtualization Technology ..27
2.7 Tips and Tricks ..27

2.7.1 Cross Modifying Code ..27
2.7.2 ld.bias and lfetch.excl ...27
2.7.3 L2D Victimization Optimization...27
2.7.4 Instruction Cache Coherence Optimization..28

2.8 IA-32 Execution ...28
2.9 Brand Information..28

3 Performance Monitoring ...31
3.1 Introduction to Performance Monitoring ..31
3.2 Performance Monitor Programming Models..31

3.2.1 Workload Characterization ...32
3.2.2 Profiling ..35
3.2.3 Event Qualification ...37
3.2.4 References ...43

3.3 Performance Monitor State ...43
3.3.1 Performance Monitor Control and Accessibility......................................46
3.3.2 Performance Counter Registers...46
3.3.3 Performance Monitor Event Counting Restrictions Overview49
3.3.4 Performance Monitor Overflow Status Registers (PMC0,1,2,3).............49
3.3.5 Instruction Address Range Matching ...50
3.3.6 Opcode Match Check (PMC32,33,34,35,36) ...53
3.3.7 Data Address Range Matching (PMC41) ...56
3.3.8 Instruction EAR (PMC37/PMD32,33,36) ..57
3.3.9 Data EAR (PMC40, PMD32,33,36) ..60
Reference Manual for Software Development and Optimization 3

3.3.10 Execution Trace Buffer (PMC39,42,PMD48-63,38,39)................................ 65
3.3.11 Interrupts .. 72
3.3.12 Processor Reset, PAL Calls, and Low Power State............................... 73

4 Performance Monitor Events.. 75
4.1 Introduction ... 75
4.2 Categorization of Events ... 75

4.2.1 Hyper-Threading and Event Types .. 76
4.3 Basic Events ... 77
4.4 Instruction Dispersal Events.. 77
4.5 Instruction Execution Events... 78
4.6 Stall Events ... 79
4.7 Branch Events... 80
4.8 Memory Hierarchy... 81

4.8.1 L1 Instruction Cache and Prefetch Events ... 83
4.8.2 L1 Data Cache Events ... 84
4.8.3 L2 Instruction Cache Events .. 86
4.8.4 L2 Data Cache Events ... 87
4.8.5 L3 Cache Events .. 91

4.9 System Events .. 92
4.10 TLB Events.. 93
4.11 System Bus Events ... 95

4.11.1 System Bus Conventions ... 98
4.11.2 Extracting Memory Latency from Montecito Performance Counters...... 98

4.12 RSE Events... 100
4.13 Hyper-Threading Events ... 101
4.14 Performance Monitors Ordered by Event Code .. 102
4.15 Performance Monitor Event List .. 108

Figures
2-1 The Montecito Processor .. 14
2-2 Urgency and Thread Switching ... 23
2-3 The Arbiter and Queues.. 26
3-1 Time-Based Sampling... 32
3-2 Itanium® Processor Family Cycle Accounting... 34
3-3 Event Histogram by Program Counter .. 36
3-4 Montecito Processor Event Qualification .. 38
3-5 Instruction Tagging Mechanism in the Montecito Processor............................... 39
3-6 Single Process Monitor ... 42
3-7 Multiple Process Monitor ... 42
3-8 System Wide Monitor .. 43
3-9 Montecito Processor Performance Monitor Register Mode 45
3-10 Processor Status Register (PSR) Fields for Performance Monitoring 46
3-11 Montecito Processor Generic PMC Registers (PMC4-15) 47
3-12 Montecito Processor Generic PMD Registers (PMD4-15) 48
4 Reference Manual for Software Development and Optimization

3-13 Montecito Processor Performance Monitor Overflow Status
Registers (PMC0,1,2,3)...49

3-14 Instruction Address Range Configuration Register (PMC38)..............................51
3-15 Opcode Match Registers (PMC32,34) ..54
3-16 Opcode Match Registers (PMC33,35) ..54
3-17 Opcode Match Configuration Register (PMC36)...55
3-18 Memory Pipeline Event Constraints Configuration Register (PMC41)57
3-19 Instruction Event Address Configuration Register (PMC37)58
3-20 Instruction Event Address Register Format (PMD34,35)58
3-21 Data Event Address Configuration Register (PMC40) ..60
3-22 Data Event Address Register Format (PMD32,d3,36) ..61
3-23 Execution Trace Buffer Configuration Register (PMC39)....................................65
3-24 Execution Trace Buffer Register Format (PMD48-63, where

PMC39.ds == 0) ...67
3-25 Execution Trace Buffer Index Register Format (PMD38)....................................68
3-26 Execution Trace Buffer Extension Register Format (PMD39)

(PMC42.mode=‘1xx) ...68
3-27 IP-EAR Configuration Register (PMC42) ..69
3-28 IP-EAR data format (PMD48-63, where PMC42.mode == 100 and

PMD48-63.ef =0) ...70
3-29 IP-EAR data format (PMD48-63, where PMC42.mode == 100 and

PMD48-63.ef =1) ...70
3-30 IP Trace Buffer Index Register Format (PMD38)(PMC42.mode=‘1xx)71
3-31 IP Trace Buffer Extension Register Format (PMD39)

(PMC42.mode=‘1xx) ...71
4-1 Event Monitors in the Itanium® 2 Processor Memory Hierarchy82
4-2 Extracting Memory Latency from PMUs..100

Tables
2-1 Itanium® Processor Family and Model Values..11
2-2 Definition Table ...12
2-3 New Instructions Available in Montecito..14
2-4 A-Type Instruction Port Mapping...15
2-5 B-Type Instruction Port Mapping...16
2-6 I-Type Instruction Port Mapping ..16
2-7 M-Type Instruction Port Mapping ..16
2-8 Execution with Bypass Latency Summary ..18
2-9 Montecito Cache Hierarchy Summary...19
2-10 PAL_BRAND_INFO Implementation-Specific Return Values28
2-11 Montecito Processor Feature Set Return Values ..29
3-1 Average Latency per Request and Requests per Cycle

Calculation Example33
3-2 Montecito Processor EARs and Branch Trace Buffer ...37
3-3 Montecito Processor Event Qualification Modes...40
3-4 Montecito Processor Performance Monitor Register Set44
3-5 Performance Monitor PMC Register Control Fields (PMC4-15)..........................46
3-6 Montecito Processor Generic PMC Register Fields (PMC4-15)47
Reference Manual for Software Development and Optimization 5

3-7 Montecito Processor Generic PMD Register Fields.. 48
3-8 Montecito Processor Performance Monitor Overflow Register

Fields (PMC0,1,2,3) .. 49
3-9 Montecito Processor Instruction Address Range Check by

Instruction Set ... 51
3-10 Instruction Address Range Configuration Register Fields (PMC38) 51
3-11 Opcode Match Registers(PMC32,34) ... 54
3-12 Opcode Match Registers(PMC33,35) ... 55
3-13 Opcode Match Configuration Register Fields (PMC36) 55
3-14 Memory Pipeline Event Constraints Fields (PMC41) .. 56
3-15 Instruction Event Address Configuration Register Fields (PMC37) 58
3-16 Instruction EAR (PMC37) umask Field in Cache Mode

(PMC37.ct=’1x) ... 59
3-17 Instruction EAR (PMD34,35) in Cache Mode (PMC37.ct=’1x)............................ 59
3-18 Instruction EAR (PMC37) umask Field in TLB Mode (PMC37.ct=00)................. 59
3-19 Instruction EAR (PMD34,35) in TLB Mode (PMC37.ct=‘00) 60
3-20 Data Event Address Configuration Register Fields (PMC40) 60
3-21 Data EAR (PMC40) Umask Fields in Data Cache Mode

(PMC40.mode=00).. 61
3-22 PMD32,33,36 Fields in Data Cache Load Miss Mode

(PMC40.mode=00).. 62
3-23 Data EAR (PMC40) Umask Field in TLB Mode (PMC40.ct=01) 63
3-24 PMD32,33,36 Fields in TLB Miss Mode (PMC40.mode=‘01).............................. 63
3-25 PMD32,33,36 Fields in ALAT Miss Mode (PMC11.mode=‘1x) 64
3-26 Execution Trace Buffer Configuration Register Fields (PMC39)......................... 66
3-27 Execution Trace Buffer Register Fields (PMD48-63)

(PMC42.mode=‘000) ... 67
3-28 Execution Trace Buffer Index Register Fields (PMD38) 68
3-29 Execution Trace Buffer Extension Register Fields (PMD39)

(PMC42.mode=‘1xx) ... 69
3-30 IP-EAR Configuration Register Fields (PMC42) ... 70
3-31 IP-EAR Data Register Fields (PMD48-63) (PMC42.mode=‘1xx) 70
3-32 IP Trace Buffer Index Register Fields (PMD38) (PMC42.mode=‘1xx) 71
3-33 IP Trace Buffer Extension Register Fields (PMD39)

(PMC42.mode=‘1xx) ... 72
3-34 Information Returned by PAL_PERF_MON_INFO for the

Montecito Processor ... 73
4-1 Performance Monitors for Basic Events.. 77
4-2 Derived Monitors for Basic Events .. 77
4-3 Performance Monitors for Instruction Dispersal Events 78
4-4 Performance Monitors for Instruction Execution Events 78
4-5 Derived Monitors for Instruction Execution Events ... 79
4-6 Performance Monitors for Stall Events.. 80
4-7 Performance Monitors for Branch Events ... 81
4-8 Performance Monitors for L1/L2 Instruction Cache and

Prefetch Events... 83
4-9 Derived Monitors for L1 Instruction Cache and Prefetch Events 84
4-10 Performance Monitors for L1 Data Cache Events... 84
6 Reference Manual for Software Development and Optimization

4-11 Performance Monitors for L1D Cache Set 0 ...85
4-12 Performance Monitors for L1D Cache Set 1 ...85
4-13 Performance Monitors for L1D Cache Set 2 ...85
4-14 Performance Monitors for L1D Cache Set 3 ...85
4-15 Performance Monitors for L1D Cache Set 4 ...86
4-16 Performance Monitors for L1D Cache Set 6 ...86
4-19 Performance Monitors for L2 Data Cache Events...87
4-20 Derived Monitors for L2 Data Cache Events ...88
4-21 Performance Monitors for L2 Data Cache Set 0 ...89
4-22 Performance Monitors for L2 Data Cache Set 1 ...89
4-23 Performance Monitors for L2 Data Cache Set 2 ...89
4-24 Performance Monitors for L2 Data Cache Set 3 ...89
4-25 Performance Monitors for L2 Data Cache Set 4 ...90
4-26 Performance Monitors for L2 Data Cache Set 5 ...90
4-27 Performance Monitors for L2 Data Cache Set 6 ...90
4-28 Performance Monitors for L2 Data Cache Set 7 ...90
4-29 Performance Monitors for L2 Data Cache Set 8 ...91
4-30 Performance Monitors for L2D Cache - Not Set Restricted91
4-31 Performance Monitors for L3 Unified Cache Events ...91
4-32 Derived Monitors for L3 Unified Cache Events ...92
4-33 Performance Monitors for System Events...93
4-34 Derived Monitors for System Events ...93
4-35 Performance Monitors for TLB Events ..93
4-36 Derived Monitors for TLB Events ..94
4-37 Performance Monitors for System Bus Events..95
4-38 Derived Monitors for System Bus Events..97
4-39 Performance Monitors for RSE Events ...100
4-40 Derived Monitors for RSE Events..101
4-41 Performance Monitors for Multi-thread Events..101
4-42 All Performance Monitors Ordered by Code ...102
Reference Manual for Software Development and Optimization 7

Revision History

Document
Number

Revision
Number Description Date

308065-001 0.9 • Initial release of the document. January 2006
8 Reference Manual for Software Development and Optimization

1 Introduction

This document is an update to the Intel® Itanium® 2 Processor Reference Manual for Software
Development and Optimization. This update is meant to give guidance on the changes that the dual-
core Intel® Itanium® 2 processor, code named Montecito, brings to the existing Itanium 2
processor family.

1.1 Terminology
The following definitions are for terms that will be used throughout this document:

1.2 Related Documentation
The reader of this document should also be familiar with the material and concepts presented in the
following documents:

• Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application
Architecture

• Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture

• Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set
Reference

§

Term Definition

Dispersal The process of mapping instructions within bundles to functional units

Bundle rotation The process of bringing new bundles into the two-bundle issue
window

Split issue Instruction execution when an instruction does not issue at the same
time as the instruction immediately before it.

Advanced load address table (ALAT) The ALAT holds the state necessary for advanced load and check
operations.

Translation lookaside buffer (TLB) The TLB holds virtual to physical address mappings

Virtual hash page table (VHPT) The VHPT is an extension of the TLB hierarchy, which resides in the
virtual memory space, is designed to enhance virtual address
translation performance.

Hardware page walker (HPW) The HPW is the third level of address translation. It is an engine that
performs page look-ups from the VHPT and seeks opportunities to
insert translations into the processor TLBs.

Register stack engine (RSE) The RSE moves registers between the register stack and the backing
store in memory.

Event address registers (EARs) The EARs record the instruction and data addresses of data cache
misses.
Reference Manual for Software Development and Optimization 9

Reference Manual for Software Development and Optimization 10

2 The Dual-Core Itanium 2
Processor

2.1 Overview
The first dual-core Itanium 2 processor, code named Montecito, is the fourth generation of the
Itanium 2 processor. Montecito builds on the strength of the previous Itanium 2 processors while
bringing many new key technologies for performance and management to the Itanium processor
family. Key improvements include multiple-cores, multiple-threads, cache hierarchy, and
speculation with the addition of new instructions.

This document describes key Montecito features and how Montecito differs in its implementation
of the Itanium architecture from previous Itanium 2 processors. Some of this information may not
be directly applicable to performance tuning, but is certainly needed to better understand and
interpret changes in application behavior on Montecito versus other Itanium architecture-based
processors. Unless otherwise stated, all of the restrictions, rules, sizes, and capacities described in
this document apply specifically to Montecito and may not apply to other Itanium architecture-
based processors. This document assumes a familiarity with the previous Itanium 2 processors and
some of the unique properties and behaviors of those. Furthermore, only differences as they relate
to performance will be included here. Information about Montecito features such as error
protection, Virtualization technology, Hyper-Threading technology, and lockstep support may be
obtained in separate documents.

General understanding of processor components and explicit familiarity with Itanium processor
instructions are assumed. This document is not intended to be used as an architectural reference for
the Itanium architecture. For more information on the Itanium architecture, consult the Intel®

Itanium® Architecture Software Developer’s Manual.

2.1.1 Identifying the Dual-Core Itanium 2 Processor
There have now been four generations of the Itanium 2 processor, which can be identified by their
unique CPUID values. For simplicity of documentation, throughout this document we will group
all processors of like model together. Table 2-1details out the CPUID values of all of the Itanium
processor family generations. Table 2-2 lists out all of the varieties of the Itanium processor family
that are available along with their grouping.

Note that the Montecito CPUID family value changes to 0x20.

Table 2-1. Itanium® Processor Family and Model Values
Family Model Description

0x07 0x00 Itanium® Processor

0x1f 0x00 Itanium 2 Processor (up to 3 MB L3 cache)

0x1f 0x01 Itanium 2 Processor (up to 6 MB L3 cache)

0x1f 0x02 Itanium 2 Processor (up to 9 MB L3 cache)

0x20 0x00 Dual-Core Itanium 2 Processor (Montecito)
Reference Manual for Software Development and Optimization 11

The Dual-Core Itanium 2 Processor
2.1.2 Introducing Montecito
Montecito takes the latest Itanium 2 processor core, improves the memory hierarchy and adds an
enhanced form of temporal multi-threading. A full introduction to the Itanium 2 processor is
available elsewhere but a brief review is provided below.

The front-end, with two levels of branch prediction, two TLBs, and a 0 cycle branch predictor,
feeds two bundles of three instructions each into the instruction buffer every cycle. This 8 entry
queue decouples the front-end from the back-end and delivers up to two bundles, of any alignment,
to the remaining 6 stages of the pipeline. The dispersal logic determines issue groups and allocates
up to 6 instructions to nearly every combination of the 11 available functional units (2 integer, 4
memory, 2 floating point, and 3 branch). The renaming logic maps virtual registers into physical
registers. Actual register (up to 12 integer and 4 floating point) reads are performed just before the
instructions execute or requests are issued to the cache hierarchy. The full bypass network allows
nearly immediate access to previous instruction results while final results are written into the
register file (up to 6 integer and 4 floating point).

Montecito preserves application and operating system investments while providing greater
opportunity for code generators to continue their steady performance push without any destructive
disturbance. This is important since even today, three years after the introduction of the first
Itanium 2 processor, compilers are providing significant performance improvements. The block
diagram of the Montecito processor can be found in Figure 2-1.

Montecito provides a second integer shifter and popcounter to help reduce port asymmetries. The
front-end provides better branching behavior for single cycle branches and cache allocation/
reclamation. Finally, Montecito decreases the time to reach recovery code when speculation fails

Table 2-2. Definition Table

Processor Abbreviation

Intel® Itanium® 2 Processor 900 MHz with 1.5 MB L3 Cache
Itanium 2 Processor (up to 3 MB L3 cache)

Intel® Itanium® 2 Processor 1.0 GHz with 3 MB L3 Cache

Low Voltage Intel® Itanium® 2 Processor 1.0 GHz with 1.5 MB
L3 Cache

Itanium 2 Processor (up to 6 MB L3 cache)

Intel® Itanium® 2 Processor 1.40 GHz with 1.5 MB L3 Cache

Intel® Itanium® 2 Processor 1.40 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.30 GHz with 3 MB L3 Cache

Intel® Itanium® 2 Processor 1.40 GHz with 4 MB L3 Cache

Intel® Itanium® 2 Processor 1.50 GHz with 6 MB L3 Cache

Low Voltage Intel® Itanium® 2 Processor 1.30 GHz with 3 MB
L3 Cache

Itanium 2 Processor (up to 9 MB L3 cache)

Intel® Itanium® 2 Processor 1.60 GHz with 3 MB L3 Cache at
400 and 533 MHz System Bus (DP Optimized)

Intel® Itanium® 2 Processor 1.50 GHz with 4 MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 6 MB L3 Cache

Intel® Itanium® 2 Processor 1.60 GHz with 9 MB L3 Cache

Intel® Itanium® 2 Processor 1.66 GHz with 6 MB L3 Cache

Intel® Itanium® 2 Processor 1.66 GHz with 9 MB L3 Cache

Individual SKUs TBD Dual-Core Itanium 2 Processor (Montecito)
12 Reference Manual for Software Development and Optimization

The Dual-Core Itanium 2 Processor
thereby providing a lower cost for speculation. All told, nearly every core block and piece of
control logic includes some optimization to improve small deficiencies.

Exposing additional performance in an already capable cache hierarchy is also challenging and
includes additional capacity, improved coherence architecture, and more efficient cache
organization and queuing. Montecito supports three levels of on-chip cache. The first level (L1)
caches are each 4-way set associative caches and hold 16 KB of instruction or data. These caches
are in-order, like the rest of the pipeline, but are non-blocking allowing high request concurrency.
These L1 caches are accessed in a single cycle using pre-validated tags. The data cache is write-
through and dual-ported to support two integer loads and two stores, while the instruction cache
has dual-ported tags and a single data port to support simultaneous demand and prefetch accesses.

While previous generations of the Itanium 2 processor share the second level (L2) cache with both
data and instructions, Montecito provides a dedicated 1 MB L2 cache for instructions. This cache is
8-way set associative with a 128 byte line size and provides the same 7 cycle instruction access
latency as the previous smaller Itanium 2 processor unified cache. A single tag and data port
supports out-of-order and pipelined accesses to provide a high utilization. The separate instruction
and data L2 caches provide more efficient access to the caches compared to Itanium 2 processors
where instruction requests would contend against data accesses for L2 bandwidth against data
accesses and potentially impact core execution as well as L2 throughput.

This previously shared 256 KB L2 cache is now dedicated to data on Montecito with several
micro-architectural improvements to increase throughput. The instruction and data separation
effectively increase the data hit rate. The L2D hit latency remains at 5 cycles for integer and 6
cycles for floating-point accesses. The tag is true 4-ported and the data is pseudo 4-ported with 16-
byte banks. Montecito removes some of the code generator challenges found in the Itanium 2
processor L2 cache. Specifically, any accesses beyond the first access to miss the L2 in previous
Itanium 2 processors would access the L2 tags periodically until a hit is detected. The repeated tag
accesses consume bandwidth from the core and increase the miss latency. On Montecito, such
misses are suspended until the L2 fill occurs. The fill awakens and immediately satisfies the
request which greatly reduces bandwidth contention and final latency. The Montecito L2D, like
previous generations of the Itanium 2 processor L2, is out-of-order and pipelined with the ability to
track up to 32 requests in addition to 16 misses and their associated victims. However, Montecito
optimizes allocation of the 32 queue entries providing a higher concurrency level than previously
possible.

The third level (L3) cache remains unified as in previous Itanium 2 processors, but is now 12 MB
in size while maintaining the same 14 cycle integer access latency found on the 6 MB and 9 MB
Itanium 2 processors. The L3 uses an asynchronous interface with the data array to achieve this low
latency; there is no clock, only a read or write valid indication. The read signal is coincident with
index and way values that initiate L3 data array accesses. Four cycles later, the entire 128-byte line
is available and latched. This data is then delivered in 4 cycles to either the L2D or L2I cache in
critical byte order.

The L3 receives requests from both the L2I and L2D but gives priority to the L2I request in the rare
case of a conflict. Moving the arbitration point from the L1-L2 in the Itanium 2 processor to the
L2-L3 cache greatly reduces conflicts thanks to the high hit rates of the L2.

The cache hierarchy is replicated in each core to total more than 13.3 MB for each core and nearly
27 MB for the entire processor.
Reference Manual for Software Development and Optimization 13

The Dual-Core Itanium 2 Processor
2.2 New Instructions
Montecito is compliant with the latest revisions of the Itanium architecture in addition to the Intel
Itanium Architecture Virtualization Specification Update. As such, Montecito introduces several
new instructions as summarized below:

Figure 2-1. The Montecito Processor

Table 2-3. New Instructions Available in Montecito

New Instruction Comment

fc.i1

NOTES:
1. This instruction behaves as the fc instruction on Montecito

Insures that instruction caches are coherent with data caches

ld162

2. This instruction will fault if issued to UC, UCE, or WC memory

AR.csd and the register specified are the targets for this load.

st162 AR.csd and the value in the register specified are written for this store

cmp8xchg162 AR.csd and the value in the register specified are written for this exchange if the 8 byte
compare is true.

hint@pause3

3. This instruction will not initiate a thread switch if it is a B type instruction.

The current thread is yielding resources to the other thread.

vmsw.0, vmsw.1 On promote pages, these instructions allow cooperative operating systems to obtain and
give up VMM privilege
14 Reference Manual for Software Development and Optimization

The Dual-Core Itanium 2 Processor
2.3 Core
The Montecito core is very similar to previous generations of the Itanium 2 processor core from a
code generation point of view. The core has new resources; specifically, an additional integer
shifter and popcounter. The core also removes the rarely needed MMU to Memory Address bypass
path. The core also includes many optimizations, from the front-end to the cache hierarchy, that are
transparent to the code generator and legacy code can see improvements without any code change.

2.3.1 Instruction Slot to Functional Unit Mapping
This information is very similar to previous Itanium 2 processors. Changes between Itanium 2
processors and Montecito will be noted with footnotes.

Each fetched instruction is assigned to a functional unit through an issue port. The numerous
functional units share a smaller number of issue ports. There are 11 functional units: eight for non-
branch instructions and three for branch instructions. They are labeled M0, M1, M2, M3, I0, I1, F0,
F1, B0, B1, and B2. The process of mapping instructions within bundles to functional units is
called dispersal.

An instruction’s type and position within the issue group determine which functional unit the
instruction is assigned. An instruction is mapped to a subset of the functional units based upon the
instruction type (i.e. ALU, Memory, Integer, etc.). Then, based on the position of the instruction
within the instruction group presented for dispersal, the instruction is mapped to a particular
functional unit within that subset.

Table 2-4, Table 2-5, Table 2-6 and Table 2-7 show the mappings of instruction types to ports and
functional units.

Note: Shading in the following tables indicates the instruction type can be issued on the port(s).

A-type instructions can be issued on all M and I ports (M0-M3 and I0 and I1). I-type instructions
can only issue to I0 or I1. The I ports are asymmetric so some I-type instructions can only issue on
port I0. M ports have many asymmetries: some M-type instructions can issue on all ports; some can
only issue on M0 and M1; some can only issue on M2 and M3; some can only issue on M0; some
can only issue on M2.

Table 2-4. A-Type Instruction Port Mapping

Instruction
Type Description Examples Ports

A1-A5 ALU add, shladd M0-M3, I0, I1

A4, A5 Add Immediate addp4, addl M0-M3, I0, I1

A6,A7,A8 Compare cmp, cmp4 M0-M3, I0, I1

A9 MM ALU pcmp[1 | 2 | 4] M0-M3, I0, I1

A10 MM Shift and Add pshladd2 M0-M3, I0, I1
Reference Manual for Software Development and Optimization 15

The Dual-Core Itanium 2 Processor
Table 2-5. B-Type Instruction Port Mapping

Instruction
Type Description Examples Ports

B1-B5 Branch br B0-B2

B6-8 Branch Predict brp B0-B2

B91

NOTES:
1. hint.b is treated as a nop.b -- it does not have any impact on multi-thread control in Montecito.

Break, nop, thread switch hint hint B0-B2

Table 2-6. I-Type Instruction Port Mapping

Instruction
Type Description Examples

I Port

I0 I1

I1 MM Multiply/Shift pmpy2.[l | r],
pmpyshr2{.u}

I2 MM Mix/Pack mix[1 | 2 | 4].[l | r
pmin, pmax

I3, I4 MM Mux mux1, mux2

I5 Variable Right Shift shr{.u] =ar,ar
pshr[2 | 4] =ar,ar

I6 MM Right Shift Fixed pshr[2 | 4] =ar,c

I7 Variable Left Shift shl{.u] =ar,ar
pshl[2 | 4] =ar,ar

I8 MM Left Shift Fixed pshl[2 | 4] =ar,c

I91

NOTES:
1. The I1 issue capability is new to Montecito

MM Popcount popcnt

I101 Shift Right Pair shrp

I11-I171 Extr, Dep
Test Nat

extr{.u}, dep{.z}
tnat

I18 Hint hint.i

I19 Break, Nop break.i, nop.i

I20 Integer Speculation Check chk.s.i

I21-28 Move to/from BR/PR/IP/AR mov =[br | pr | ip | ar]
mov [br | pr | ip | ar]=

I29 Sxt/Zxt/Czx sxt, zxt, czx

Table 2-7. M-Type Instruction Port Mapping (Sheet 1 of 2)

Instruction
Type Description Examples

Memory Port

M0 M1 M2 M3

M1, 2, 3 Integer Load ldsz, ld8.fill

M4, 5 Integer Store stsz, st8.spill
16 Reference Manual for Software Development and Optimization

The Dual-Core Itanium 2 Processor
2.3.2 Instruction Latencies and Bypasses
Table 2-8 lists the Montecito processor operation latencies.

M6, 7, 8 Floating-point Load ldffsz, ldffsz.s, ldf.fill

Floating-point Advanced Load ldffsz.a, ldffsz.c.[clr | nc]

M9, 10 Floating-point Store stffsz, stf.spill

M11, 12 Floating-point Load Pair ldfpfsz

M13, 14, 15 Line Prefetch lfetch

M16 Compare and Exchange cmpxchgsz.[acq | rel]

M17 Fetch and Add fetchaddsz.[acq | rel]

M18 Set Floating-point Reg setf.[s | d | exp | sig}

M19 Get Floating-point Reg getf.[s | d | exp | sig}

M20, 21 Speculation Check chk.s{.m}

M22, 23 Advanced Load Check chk.a[clr | nc]

M24 Invalidate ALAT invala

Mem Fence, Sync, Serialize fwb, mf{.a}, srlz.[d | i],
sync.li

M25 RSE Control flushrs, loadrs

M26, 27 Invalidate ALAT invala.e

M28 Flush Cache, Purge TC Entry fc, ptc.e

M29, 30, 31 Move to/from App Reg mov{.m} ar=
mov{.m} =ar

M32, 33 Move to/from Control Reg mov cr=, mov =cr

M34 Allocate Register Stack Frame alloc

M35, 36 Move to/from Proc. Status Reg mov psr.[l | um]
mov =psr.[l | m]

M37 Break, Nop.m break.m, nop.m

M38, 39, 40 Probe Access probe.[r | w].{fault}

M41 Insert Translation Cache itc.[d | i]

M42, 43 Move Indirect Reg
Insert TR

mov ireg=, move =ireg,
itr.[d | i]

M44 Set/Reset User/System Mask sum, rum, ssm, rsm

M45 Purge Translation Cache/Reg ptc.[d | i | g | ga]

M46 Virtual Address Translation tak, thash, tpa, ttag

M47 Purge Translation Cache ptc.e

M48 Thread switch hint hint

Table 2-7. M-Type Instruction Port Mapping (Sheet 2 of 2)

Instruction
Type Description Examples

Memory Port

M0 M1 M2 M3
Reference Manual for Software Development and Optimization 17

The Dual-Core Itanium 2 Processor
2.3.3 Caches and Cache Management Changes
Montecito, like the previous Itanium 2 processors, supports three levels of on-chip cache. Each
core contains a complete cache hierarchy, with nearly 13.3 Mbytes per core, for a total of nearly 27
Mbytes of processor cache.

Table 2-8. Execution with Bypass Latency Summary

Consumer (across)
Producer (down)

Qual.
Pred.

Branch
Pred. ALU

Load
Store
Addr

Multi-
media

Store
Data Fmac Fmisc getf setf

Adder: add, cmp, cmp4, shrp,
extr, dep, tbit, addp4, shladd,
shladdp4, zxt, sxt, czx, sum,
logical ops, 64-bit immed.
moves, movl, post-inc ops
(includes post-inc stores,
loads, lfetches)

n/a n/a 1 1 3 1 n/a n/a n/a 1

Multimedia n/a n/a 3 4 or 81 2 3 n/a n/a n/a 3
thash, ttag, tak, tpa, probe2 5 6 6 5
getf2 n/a n/a 5 6 6 5 n/a n/a n/a 5
setf2 n/a n/a n/a n/a n/a 6 6 6 6 n/a
Fmac: fma, fms, fnma, fpma,
fpms, fpnma, fadd, fnmpy,
fsub, fpmpy, fpnmpy, fmpy,
fnorm, xma, frcpa, fprcpa,
frsqrta, fpsqrta, fcvt, fpcvt

n/a n/a n/a n/a n/a 4 4 4 4 n/a

Fmisc: fselect, fcmp, fclass,
fmin, fmax, famin, famax,
fpmin, fpmax, fpamin, fpcmp,
fmerge, fmix, fsxt, fpack,
fswap, fand, fandcm, for, fxor,
fpmerge, fneg, fnegabs, fpabs,
fpneg, fpnegabs

n/a n/a n/a n/a n/a 4 4 4 4 n/a

Integer side predicate write:
cmp, tbit, tnat

1 0 n/a n/a n/a n/a n/a n/a n/a n/a

FP side predicate write: fcmp 2 1 n/a n/a n/a n/a n/a n/a n/a n/a
FP side predicate write: frcpa,
fprcpa, frsqrta, fpsqrta

2 2 n/a n/a n/a n/a n/a n/a n/a n/a

Integer Load3 n/a n/a N N+1 N+2 N N N N N
FP Load4 n/a n/a M+1 M+2 M+3 M+1 M+1 M+1 M+1 M+1
IEU2: move_from_br, alloc n/a n/a 2 2 3 2 n/a n/a n/a 2
Move to/from CR or AR5 n/a n/a C C C C n/a n/a n/a C
Move to pr 1 0 2 2 3 2 n/a n/a n/a n/a
Move indirect6 n/a n/a D D D D n/a n/a n/a D

NOTES:
1. The MMU to memory address bypass in Montecito does not exist. If code does not account for the missing bypass, the processor will detect the case

and cause a pipeflush to ensure proper separation between the producer and the consumer.
2. Since these operations are performed by the L2D, they interact with the L2D pipeline. These are the minimum latencies but they could be much larger

because of this interaction.
3. N depends upon which level of cache is hit: N=1 for L1D, N=5 for L2D, N=14-15 for L3, N=~180-225 for main memory. These are minimum latencies

and are likely to be larger for higher levels of cache.
4. M depends upon which level of cache is hit: M=5 for L2D, M=14-15 for L3, M=~180-225 for main memory. These are minimum latencies and are

likely to be larger for higher levels of cache. The +1 in all table entries denotes one cycle needed for format conversion.
5. Best case values of C range from 2 to 35 cycles depending upon the registers accessed. EC and LC accesses are 2 cycles, FPSR and CR accesses

are 10-12 cycles.
6. Best case values of D range from 6 to 35 cycles depending upon the indirect registers accessed. LREGS, PKR, and RR are on the faster side being

6 cycle accesses.
18 Reference Manual for Software Development and Optimization

The Dual-Core Itanium 2 Processor
2.3.3.1 L1 Caches

The L1I and L1D caches are essentially unchanged from previous generations of the Itanium 2
processor.

2.3.3.2 L2 Caches

Level 2 caches are both different and similar to the Itanium 2 processor L2 cache. The previous
Itanium 2 processor L2 shares both data and instructions, while the Montecito has dedicated
instruction (L2I) and data (L2D) caches. This separation of instruction and data caches makes it
possible to have dedicated access paths to the caches and thus eliminates contention and eases
capacity pressures on the L2 caches.

The L2I cache holds 1 Mbyte; is eight-way set associative; and has a 128-byte line size-yet has the
same seven-cycle instruction-access latency as the smaller previous Itanium 2 processor unified
cache. The tag and data arrays are single ported, but the control logic supports out-of-order and
pipelined accesses. This large cache greatly reduces the number of instruction accesses seen at the
L3 cache. Any coherence request to identify whether a cache line is in the processor will invalidate
that line from the L2I cache.

The L2D cache has the same structure and organization as the Itanium 2 processor shared 256 KB
L2 cache but with several microarchitectural improvements to increase throughput. The L2D hit
latency remains at five cycles for integer and six cycles for floating-point accesses. The tag array is
true four-ported-four fully independent accesses in the same cycle-and the data array is pseudo
four-ported with 16-byte banks.

Montecito optimizes several aspects of the L2D. In the Itanium 2 processor, any accesses to the
same cache line beyond the first access that misses L2 will access the L2 tags periodically until the
tags detect a hit. The repeated tag accesses consume bandwidth from the core and increase the L2
miss latency. Montecito suspends such secondary misses until the L2D fill occurs. At that point, the
fill immediately satisfies the suspended request. This approach greatly reduces bandwidth
contention and final latency. The L2D, like the Itanium 2 processor L2, is out of order, pipelined,
and tracks 32 requests (L2D hits or L2D misses not yet passed to the L3 cache) in addition to 16
misses and their associated victims. The difference is that Montecito allocates the 32 queue entries
more efficiently, which provides a higher concurrency level than with the Itanium 2 processor.

Table 2-9. Montecito Cache Hierarchy Summary

Cache Data Types
Supported

Write
Through/

Write Back

Data
Array
Size

Line Size Ways Index Queuing
Minimum
/Typical
Latency

L1D Integer WT 16 KB 64 Bytes 4 VA[11:6] 8 Fills 1/1

L1I Instruction NA 16 KB 64 Bytes 4 VA[11:6] 1 Demand
+ 7

Prefetch
Fills

1/1

L2D Integer,
Floating

Point

WB 256 KB 128 Bytes 8 PA[14:7] 32 OzQ/
16 Fills

5/11

L2I Instruction NA 1 MByte 128 Bytes 8 PA[16:7] 8 7/10

L3 Integer,
Floating
Point,

Instruction

WB 12 MByte 128 Bytes 12 PA[19:7] 8 14/21
Reference Manual for Software Development and Optimization 19

The Dual-Core Itanium 2 Processor
Specifically, the queue allocation policy now supports recovery of empty entries. This allows for
greater availability of the L2 OzQ in light of accesses completed out of order.

The L2D also considers the thread identifier when performing ordering such that an ordered
request from one thread is not needlessly ordered against another thread’s accesses.

2.3.3.3 L3 Cache

Montecito's L3 cache remains unified as in previous Itanium 2 processors, but is now 12 MB. Even
so, it maintains the same 14-cycle integer-access best case latency in the 6M and 9M Itanium 2
processors. Montecito's L3 cache uses an asynchronous interface with the data array to achieve this
low latency; there is no clock, only a read or write valid indication. Four cycles after a read signal,
index, and way, the entire 128-byte line is available and latched. The array then delivers this data in
four cycles to either the L2D or L2I in critical-byte order.

Montecito's L3 receives requests from both the L2I and L2D but gives priority to the L2I request in
the rare case of a conflict. Conflicts are rare because Montecito moves the arbitration point from
the Itanium 2 processor L1-L2 to L2-L3. This greatly reduces conflicts because of L2I and L2D's
high hit rates. The I and D arbitration point also reduces conflict and access pressure within the
core; L1I misses go directly to the L2I and not through the core. L2I misses contend against L2D
request for L3 access.

2.3.3.4 Request Tracking

All L2I and L2D requests are allocated to one of 16 request buffers. Requests are sent to the to the
L3 cache and system from these buffers by the tracking logic. A modified L2D victim or partial
write may be allocated to one of 8 write buffers. This is an increase of 2 over the Itanium 2
processor. The lifetime of the L2D victim buffers is also significantly decreased to further reduce
pressure on them. Lastly, the L3 dirty victim resources has grown by 2 entries to 8 in Montecito.

In terms of write coalescing buffers (WCB), Montecito has 4 128B line WCBs in each core. These
are fully shared between threads.

2.4 Threading
The multiple thread concept starts with the idea that the processor has some resources that cannot
be effectively utilized by a single thread. Therefore, sharing under-utilized resources between
multiple threads will increase utilization and performance. The Montecito processor Hyper-
Threading Technology implementation duplicates and shares resources to create two logical
processors. All architectural state and some micro-architectural state is duplicated.

The duplicated architectural state (general, floating point, predicate, branch, application,
translation, performance monitoring, bank, and interrupt registers) allows each thread to appear as
a complete processor to the operating system thus minimizing the changes needed at the OS level.
The duplicated micro-architectural state of the return stack buffer and the advanced load address
table (ALAT) prevent cross-thread pollution that would occur if these resources were shared
between the two logical processors.

The two logical processors share the parallel execution resources (core) and the memory hierarchy
(caches and TLBs). There are many approaches to sharing resources that vary from fixed time
intervals, temporal multi-threading or TMT, to sharing resources concurrently, simultaneous multi-
threading or SMT. The Montecito Hyper-Threading Technology approach blends both approaches
such that the cores share threads using a TMT approach while the memory hierarchy shares
resources using a SMT approach. The core TMT approach is further augmented with control
20 Reference Manual for Software Development and Optimization

The Dual-Core Itanium 2 Processor
hardware that monitors the dynamic behavior of the threads and allocates core resources to the
most appropriate thread - an event experienced by the workload may cause a switch before the
thread quantum of TMT would cause a switch. This modification of TMT may be termed switch-
on-event multi-threading.

2.4.1 Sharing Core Resources
Many processors implementing multi-threading share resources using the SMT paradigm. In SMT,
instructions from different threads compete for and share execution resources such that each
functional resource is dynamically allocated to an available thread. This approach allocates
resources originally meant for instruction level parallelism (ILP), but under-utilized in the single
thread case, to exploit thread level parallelism (TLP). This is common in many out-of-order
execution designs where increased utilization of functional units can be attained for little cost.

Processor resources may also be shared temporally rather than symmetrically. In TMT, a thread is
given exclusive ownership of resources for a small time period. Complexity may be reduced by
expanding the time quantum to at least the pipeline depth and thus ensure that only a single thread
owns any execution or pipeline resources at any moment. Using this approach to multi-threading,
nearly all structures and control logic can be thread agnostic allowing the natural behaviors of the
pipeline, bypass, and stall control logic for execution to be leveraged while orthogonal logic
controls and completes a thread switch is added. However, this approach also means that a pipeline
flush is required at thread switch points.

In the core, one thread has exclusive access to the execution resources (foreground thread) for a
period of time while the other thread is suspended (background thread). Control logic monitors the
workload's behavior and dynamically decreases the time quantum for a thread that is not likely to
make progress. Thus, if the control logic determines that a thread is not making progress, the
pipeline is flushed and the execution resources are given to the background thread. This ensures
better overall utilization of the core resources over strict TMT and effectively hides the cost of long
latency operations such as memory accesses.

A thread switch on Montecito requires 15 cycles from initiation until the background thread retires
an instruction. Given the low latency of the memory hierarchy (1 cycle L1D, 5 cycle L2D, and 14
cycle L3) memory accesses are the only potentially stalling condition that greatly exceeds the
thread switch time and thus is the primary switch event.

A thread switch also has other side effects such as invalidating the Prefetch Virtual Address Buffer
(PVAB) and canceling any prefetch requests in the prefetch pipeline.

2.4.1.1 The Switch Events

There are several events that can lead to a thread switch event. Given that hiding memory latency is
the primary motivation for multi-threading, the most common switch event is based on L3 cache
misses and data returns. Other events, such as the time-out and forward progress event, provide
fairness, while the hint events provide paths for the software to influence thread switches. These
events have an impact on a thread's urgency which indicates a thread's ability to effectively use
core resources. Each event is described below:

• L3 Cache Miss - An L3 miss by the foreground thread is likely to cause that thread to stall
waiting for the return from the system interface. Hence, L3 misses can trigger thread switches
subject to thread urgency comparisons. This event decreases the thread’s urgency. Since there
is some latency between when a thread makes a request and when it is determined to be an L3
miss, it is possible to have multiple requests from a thread miss the L3 cache before a thread
switch occurs.
Reference Manual for Software Development and Optimization 21

The Dual-Core Itanium 2 Processor
• L3 Cache Return - An L3 miss data return for the background thread is likely to resolve data
dependences and is an early indication of execution readiness, hence an L3 miss data return
can trigger thread switch events subject to thread urgency comparisons. This event increases
the thread’s urgency

• Time-out - Thread-quantum counters ensure fairness in access to the pipeline execution
resources for each thread. If the thread-quantum expiration occurs when the thread was not
stalled, its urgency is set to a high value to indicate execution readiness prior to the switch
event.

• Switch Hint - The Itanium architecture provides the hint@pause instruction which can
trigger a thread switch to yield execution to the background thread. This allows software to
indicate when the current thread has no need of the core resources.

• Low-power Mode - When the active thread has entered into a quiesced low-power mode, a
thread switch is triggered to the background thread so that it may continue execution.
Similarly, if both threads are in a quiesced low-power state, and the background thread is
awakened, a thread switch is triggered.

The L3 miss and data return event can occur for several types of accesses: data or instruction,
prefetch or demand, cacheable or uncacheable, or hardware page walker (HPW). A data demand
access includes loads, stores, and semaphores.

The switch events are intended to enable the control logic to decide the appropriate time to switch
threads without software intervention. Thus, Montecito Hyper-Threading Technology is mostly
transparent to the application and the operating system

2.4.1.2 Software Control of Thread Switching

The hint@pause instruction is used by software to initiate a thread switch. The intent is to allow
code to indicate that it does not have any useful work to do and that its execution resources should
be given to the other thread. Some later event, such as an interrupt, may change the work for the
thread and should awaken the thread.

The hint@pause instruction forces a switch from the foreground thread to the background
thread. This instruction can be predicated to conditionally initiate a thread switch. Since the current
issue group retires before the switch is initiated, the following code sequences are equivalent:

{.mii

hint@pause

add r1 = r2, r3

add r4 = r2, r0

}

{.mii

add r1 = r2, r3

add r4 = r2, r0

hint@pause

}

2.4.1.3 Urgency

Each thread has an urgency which can take on values from 0 to 7. A value of 0 denotes that a thread
has no useful work to perform. A value of 7 signifies that a thread is actively making forward
progress. The nominal urgency is 5 and indicates that a thread is actively progressing. The urgency
of one thread is compared against the other at every L3 event. If the urgency of the currently
22 Reference Manual for Software Development and Optimization

The Dual-Core Itanium 2 Processor
executing thread is lower than the background thread then the L3 event will initiate a thread switch.
Every L3 miss event decrements the urgency by 1, eventually saturating at 0. Similarly, every L3
return event increments the urgency by 1 as long as the urgency is below 5. Figure 2-2 shows a
typical urgency based switch scenario. The urgency can be set to 7 for a thread that is switched out
due to time-out event. An external interrupt directed at the background thread will set the urgency
for that thread to 6 which increases the probability of a thread switch and provide a reasonable
response time for interrupt servicing.

2.4.2 Tailoring Thread Switch Behavior
Montecito allows the behavior of the thread switch control logic to be tailored to meet specific
software requirements. Specifically, thread switch control may emphasize overall performance,
thread fairness or elevate the priority of one thread over the other. These different behaviors are
available through a low latency PAL call, PAL_SET_HW_POLICY. This will allow software to
exert some level of control over how the processor determines the best time to switch. Details on
this call and the parameters can be found in the latest Intel® Itanium® Architecture Software
Developer’s Manual and Intel® Itanium® Architecture Software Developer’s Manual Specification
Update.

Figure 2-2. Urgency and Thread Switching
Reference Manual for Software Development and Optimization 23

The Dual-Core Itanium 2 Processor
2.4.3 Sharing Cache and Memory Resources
The Montecito memory resources that are concurrently or simultaneously shared between the two
threads include the first and second level TLBs, the first, second, and third level caches, and system
interface resources. Each of these structures are impacted in different ways as a result of their
sharing.

2.4.3.1 Hyper-Threading Technology and the TLBs

The ptc.e instruction in previous Itanium 2 processors would invalidate the entire Translation
Cache (TC) section of the TLB with one instruction. This same behavior is retained for Montecito
with the caveat that a ptc.e issued on one thread will invalidate the TC of the other thread at the
same time.

The L2I and L2D TLB on the Itanium 2 processor supported 64 Translation Registers (TR).
Montecito supports 32 TRs for each logical processor.

2.4.3.1.1 Instruction TLBs

The replacement algorithms for the L1I and L2I TLB do not consider thread for replacement vector
updating. However, the L2I TLB will reserve one TLB entry for each thread to meet the
architectural requirements for TCs available to a logical processor.

The TLBs support SMT-based sharing by assigning a thread identifier to the virtual address. Thus,
two threads cannot share the same TLB entry at the same time even if the virtual address is the
same between the two threads.

Since the L1I TLB is key in providing a pseudo-virtual access to the L1I cache, using
prevalidation, when a L1I TLB entry is invalidated, the L1I cache entries associated with that page
(up to 4 K) are invalidated. However, the invalidation of a page (and hence cache contents) can be
suppressed when two threads access the same virtual and physical addresses. This allows the two
threads to share much of the L1I TLB and cache contents. For example, T0 inserts a L1I TLB entry
with VA=0 and PA=0x1001000. T0 then accesses VAs 0x000 to 0xFFF which are allocated to the
L1I cache. A thread switch occurs. Now, T1 initiates an access with VA=0. It will miss in the L1I
TLB because the entry with VA=0 belongs to T0. T1 will insert a L1I TLB entry with VA=0 and
PA=0x1001000. The T1 L1I TLB entry replaces the T0 L1I TLB entry without causing an
invalidation. Thus, the accesses performed by T0 become available to T1 with the exception of the
initial T1 access that inserted the L1I TLB page. Since the L1I cache contents can be shared
between two threads and the L1I cache includes branch prediction information, this optimization
allows one thread to impact the branch information contained in the L1I cache and hence branch
predictions generated for each thread.

2.4.3.1.2 Data TLBs

The replacement algorithms for the L1D and L2D TLB do not consider threads for replacement
vector updating. However, the L2D TLB will reserves 16 TLB entries for each thread to meet the
architectural requirements for TCs available to a logical processor.

The TLBs support SMT based sharing by assigning a thread identifier to the virtual address. Thus,
two threads cannot share the same TLB entry at the same time even if the virtual address is the
same between the two threads.

Despite the fact that both the instruction and data L1 TLBs support prevalidation, the L1I TLB
optimization regarding cache contents is not supported in the L1D TLB.
24 Reference Manual for Software Development and Optimization

The Dual-Core Itanium 2 Processor
2.4.3.2 Hyper-Threading Technology and the Caches

The L2I, L2D, and L3 caches are all physically addressed. Thus, the threads can fully share the
cache contents (i.e. an access allocated by T0 can be accessed by both T0 and T1). The queueing
resources for these cache levels are equally available to each thread. The replacement logic also
ignores threads such that T0 can cause an eviction of T1 allocated data and a hit will cause a cache
line to be considered recently used regardless of the thread that allocated or accessed the line.

A thread identifier is provided with each instruction or data cache request to ensure proper ordering
of requests between threads at the L2D cache in addition to performance monitoring and switch
event calculations at all levels. The thread identifier allows ordered and unordered transactions
from T0 pass ordered transactions from T1.

2.4.3.3 Hyper-Threading Technology and the System Interface

The system interface logic also ignores the thread identifier in allocating queue entries and in
prioritizing system interface requests. The system interface logic tracks L3 miss and fills and as
such, uses the thread identifier to correctly signal to the core which thread missed or filled the
cache for L3 miss/return events. The thread identifier is also used in performance monitor event
collection and counting.

The thread identifier can be made visible on the system interface as part of the agent identifier
through a PAL call. This is for informational purposes only as the bit would appear in a reserved
portion of the agent identifier and Montecito does not require the memory controller to ensure
forward progress and fairness based on the thread identifier -- the L2D cache ensures forward
progress between threads.

2.5 Dual Cores
Montecito is the first dual core Itanium 2 processor. The two cores attach to the system interface
through the arbiter, which provides a low-latency path for each core to initiate and respond to
system events.

Figure 2-3 is a block diagram of the arbiter, which organizes and optimizes each core's request to
the system interface, ensures fairness and forward progress, and collects responses from each core
to provide a unified response. The arbiter maintains each core's unique identity to the system
interface and operates at a fixed ratio to the system interface frequency. The cores are responsible
for thread ordering and fairness so the thread identifier to uniquely identify transactions on the
system interface is not necessary. However, the processor can be configured to provide the thread
identifier for informational purposes only.
Reference Manual for Software Development and Optimization 25

The Dual-Core Itanium 2 Processor
As the figure shows, the arbiter consists of a set of address queues, data queues, and synchronizers,
as well as logic for core and system interface arbitration. Error-Correction Code (ECC) encoders/
decoders and parity generators exist but are not shown.

The core initiates one of three types of accesses, which the arbiter allocates to the following queues
and buffers:

• Request queue. This is the primary address queue that supports most request types. Each core
has four request queues.

• Write address queue. This queue holds addresses only and handles explicit writebacks and
partial line writes. Each core has two write address queues.

• Clean castout queue. This queue holds the address for the clean castout (directory and snoop
filter update) transactions. The arbiter holds pending transactions until it issues them on the
system interface. Each core has four clean castout queues.

• Write data buffer. This buffer holds outbound data and has a one-to-one correspondence with
addresses in the write address queue. Each core has four write data buffers, with the additional
two buffers holding implicit writeback data.

The number of entries in these buffers are small because they are deallocated once the transaction
is issued on the system interface. System interface responses to the transaction are sent directly to
the core where the overall tracking of a system interface request occurs.

Note that there are no core to core bypasses present. Thus, a cache line that is requested by core 0
but exists modified on core 1 will be issued to the system interface, snoop core 1 which provides
the data and a modified snoop result - all of which is seen on the system interface.

The Snoop queue issues snoop requests to the cores and coalesces the snoop response from each
core into a unified snoop response for the socket. If any core is delayed in delivering its snoop
response, the arbiter will delay the snoop response on the system interface.

The arbiter delivers all data returns directly to the appropriate core using a unique identifier
provided with the initial request. It delivers broadcast transactions, such as interrupts and TLB
purges, to both cores in the same way that delivery would occur if each core were connected
directly to the system interface.

Figure 2-3. The Arbiter and Queues
26 Reference Manual for Software Development and Optimization

The Dual-Core Itanium 2 Processor
2.5.1 Fairness and Arbitration
The arbiter interleaves core requests on a one-to-one basis when both cores have transactions to
issue. When only one core has requests, its can issue its requests without the other core having to
issue a transaction. Because read latency is the greatest concern, the read requests are typically the
highest priority, followed by writes, and finally clean castouts. Each core tracks the occupancy of
the arbiter's queues using a credit system for flow control. As requests complete, the arbiter
informs the appropriate core of the type and number of deallocated queue entries. The cores use
this information to determine which, if any, transaction to issue to the arbiter.

2.6 Intel® Virtualization Technology
The Montecito processor is the first Itanium 2 processor to implement Intel® Virtualization
Technology. The full specification as well as further information on Intel Virtualization Technology
can be found at:
http://www.intel.com/technology/computing/vptech/.

2.7 Tips and Tricks

2.7.1 Cross Modifying Code
Section 2.5 in Part 2 of Volume 2 of the Intel® Itanium® Architecture Software Developer’s Manual
specifies specific sequences that must be followed when any instruction code may exist in the data
cache. Many violations of this code may have worked in previous Itanium 2 processors, but such
violations are likely to be exposed by the cache hierarchy found in Montecito. Code in violation of
the architecture should be modified to adhere to the architectural requirements.

The large L2I and the separation of the instruction and data at the L2 level also requires additional
time to ensure coherence if using the PAL_CACHE_FLUSH procedure with the I/D coherence
option. Care should be taken to ensure that previously lower cost uses of the
PAL_CACHE_FLUSH call should be replaced with the architecture required code sequence for
ensuring instruction and data consistency.

2.7.2 ld.bias and lfetch.excl
The ld.bias and lfetch.excl instructions have been enhanced on the Montecito processor.
These instructions can now bring in lines into the cache in a state that is ready to be modified if
supported by the memory controller. This feature allows a single lfetch.excl or ld.bias to
prefetch both the source and destination streams. This feature is enabled by default, but may be
disabled by PAL_SET_PROC_FEATURES bit 7 of the Montecito feature_set (18).

2.7.3 L2D Victimization Optimization
Montecito also improves on the behaviors associated with internal cache line coherence tracking.
The number of false L2D victims will drastically reduce on Montecito over previous Itanium 2
processors. This optimization is enabled by default, but may be disabled by
PAL_SET_PROC_FEATURES.
Reference Manual for Software Development and Optimization 27

The Dual-Core Itanium 2 Processor
2.7.4 Instruction Cache Coherence Optimization
Coherence requests of the L1I and L2I caches will invalidate the line if it is in the cache. Montecito
allows instruction requests on the system interface to be filtered such that they will not initiate
coherence requests of the L1I and L2I caches. This will allow instructions to be cached at the L1I
and L2I levels across multiple processors in a coherent domain. This optimization is enabled by
default, but may be disabled by PAL_SET_PROC_FEATURES bit 5 of the Montecito
feature_set (18).

2.8 IA-32 Execution
IA-32 execution on the Montecito processor is enabled with the IA-32 Execution Layer (IA-32 EL)
and PAL-based IA-32 execution. IA-32 EL is OS-based and is only available after an OS has
booted. PAL-based IA-32 execution is available after PAL_COPY_PAL is called and provides IA-
32 execution support before the OS has booted. All OSes running on Montecito have a requirement
to have IA-32 EL installed. There is no support for PAL-based IA-32 execution in an OS
environment.

IA-32 EL is a software layer that is currently shipping with Itanium architecture-based operating
systems and will convert IA-32 instructions into Itanium processor instructions via dynamic
translation. Further details on operating system support and functionality of IA-32 EL can be found
at http://www.intel.com/cd/ids/developer/asmo-na/eng/strategy/66007.htm.

2.9 Brand Information
One of the newer additions to the Itanium architecture is the PAL_BRAND_INFO procedure. This
procedure, along with PAL_PROC_GET_FEATURES, allows software to obtain processor
branding and feature information. Details on the above functions can be found in the Intel®

Itanium® Architecture Software Developer’s Manual.
Below is the table of the implementation-specific return values for PAL_BRAND_INFO.
Montecito will implement all three, however previous implementations of the Intel Itanium 2
processor are all unable to retrieve the processor frequency, so requests for these fields will return -
6, information not available. Also, previous Itanium 2 processors cannot return system bus
frequency speed. Implementation-specific values are expected to start at value 16 and continue
until an invalid argument (-2) is returned.
Note: The values returned below are the values that the processor was validated at, which is not
necessarily the values that the processor is currently running at.

Table 2-10. PAL_BRAND_INFO Implementation-Specific Return Values

Value Definition

18 The system bus frequency component (in Hz) of the brand
identification string will be returned in the brand_info return
argument.

17 The cache size component (in bytes) of the brand
identification string will be returned in the brand_info return
argument.

16 The frequency component (in Hz) of the brand identification
string will be returned in the brand_info return argument.
28 Reference Manual for Software Development and Optimization

The Dual-Core Itanium 2 Processor
There are other processor features that may not be included in the brand name above. To obtain
information on if that technology or feature has been implemented, the
PAL_PROC_GET_GEATURES procedure should be used. Montecito features will be in the
Montecito processor feature_set (18).

\

§

Table 2-11. Montecito Processor Feature Set Return Values

Value Definition

18 Hyper-Threading Technology (HT) - This processor
supports Hyper-Threading Technology

17 Low Voltage (LV) - This processor is a low power SKU

16 Dual-Processor (DP) - This processor is restricted to two
processor (DP) systems
Reference Manual for Software Development and Optimization 29

The Dual-Core Itanium 2 Processor
30 Reference Manual for Software Development and Optimization

3 Performance Monitoring

3.1 Introduction to Performance Monitoring
This chapter defines the performance monitoring features of the Montecito processor. The
Montecito processor provides 12 48-bit performance counters per thread, 200+ monitorable events,
and several advanced monitoring capabilities. This chapter outlines the targeted performance
monitor usage models and defines the software interface and programming model.

The Itanium architecture incorporates architected mechanisms that allow software to actively and
directly manage performance critical processor resources such as branch prediction structures,
processor data and instruction caches, virtual memory translation structures, and more. To achieve
the highest performance levels, dynamic processor behavior should be able to be monitored and fed
back into the code generation process to better encode observed run-time behavior or to expose
higher levels of instruction level parallelism. These measurements will be critical for
understanding the behavior of compiler optimizations, the use of architectural features such as
speculation and predication, or the effectiveness of microarchitectural structures such as the ALAT,
the caches, and the TLBs. These measurements will provide the data to drive application tuning
and future processor, compiler, and operating system designs.

The remainder of this chapter is divided into the following sections:

• Section 3.2 discusses how performance monitors are used, and presents various Montecito
processor performance monitoring programming models.

• Section 3.3 defines the Montecito processor specific performance monitoring features,
structures and registers.

Chapter 4 provides an overview of the Montecito processor events that can be monitored.

3.2 Performance Monitor Programming Models
This section introduces the Montecito processor performance monitoring features from a
programming model point of view and describes how the different event monitoring mechanisms
can be used effectively. The Montecito processor performance monitor architecture focuses on the
following two usage models:

• Workload Characterization: the first step in any performance analysis is to understand the
performance characteristics of the workload under study. Section 3.2.1 discusses the
Montecito processor support for workload characterization.

• Profiling: profiling is used by application developers and profile-guided compilers.
Application developers are interested in identifying performance bottlenecks and relating them
back to their code. Their primary objective is to understand which program location caused
performance degradation at the module, function, and basic block level. For optimization of
data placement and the analysis of critical loops, instruction level granularity is desirable.
Profile-guided compilers that use advanced features of the Itanium architecture, such as
predication and speculation, benefit from run-time profile information to optimize instruction
schedules. The Montecito processor supports instruction level statistical profiling of branch
mispredicts and cache misses. Details of the Montecito processor’s profiling support are
described in Section 3.2.2
Reference Manual for Software Development and Optimization 31

Performance Monitoring
3.2.1 Workload Characterization
The first step in any performance analysis is to understand the performance characteristics of the
workload under study. There are two fundamental measures of interest: event rates and program
cycle break down.

• Event Rate Monitoring: Event rates of interest include average retired instructions-per-clock
(IPC), data and instruction cache miss rates, or branch mispredict rates measured across the
entire application. Characterization of operating systems or large commercial workloads (e.g.
OLTP analysis) requires a system-level view of performance relevant events such as TLB miss
rates, VHPT walks/second, interrupts/second, or bus utilization rates. Section 3.2.1.1 discusses
event rate monitoring.

• Cycle Accounting: The cycle breakdown of a workload attributes a reason to every cycle
spent by a program. Apart from a program’s inherent execution latency, extra cycles are
usually due to pipeline stalls and flushes. Section 3.2.1.4 discusses cycle accounting.

3.2.1.1 Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence counters
before and after the workload is run, and then computing the desired rates. For instance, two basic
Montecito processor events that count the number of retired Itanium instructions
(IA64_INST_RETIRED.u) and the number of elapsed clock cycles (CPU_OP_CYCLES) allow a
workload’s instructions per cycle (IPC) to be computed as follows:

• IPC = (IA64_INST_RETIRED.ut1 - IA64_INST_RETIRED.ut0) / (CPU_OP_CYCLESt1 -
CPU_OP_CYCLESt0)

Time-based sampling is the basis for many performance debugging tools (VTune™ analyzer, gprof,
WinNT). As shown in Figure 3-1, time-based sampling can be used to plot the event rates over
time, and can provide insights into the different phases that the workload moves through.

On the Montecito processor, many event types, e.g. TLB misses or branch mispredicts are limited
to a rate of one per clock cycle. These are referred to as “single occurrence” events. However, in
the Montecito processor, multiple events of the same type may occur in the same clock. We refer to
such events as “multi-occurrence” events. An example of a multi-occurrence events on the
Montecito processor is data cache read misses (up to two per clock). Multi-occurrence events, such
as the number of entries in the memory request queue, can be used to the derive average number
and average latency of memory accesses. Section 3.2.1.2 and Section 3.2.1.3 describe the basic
Montecito processor mechanisms for monitoring single and multi-occurrence events.

Figure 3-1. Time-Based Sampling

Time
Sample Interval

t1t0

E
ve

nt
 R

at
e

32 Reference Manual for Software Development and Optimization

Performance Monitoring
3.2.1.2 Single Occurrence Events and Duration Counts

A single occurrence event can be monitored by any of the Montecito processor performance
counters. For all single occurrence events, a counter is incremented by up to one per clock cycle.
Duration counters that count the number of clock cycles during which a condition persists are
considered “single occurrence” events. Examples of single occurrence events on the Montecito
processor are TLB misses, branch mispredictions, and cycle-based metrics.

3.2.1.3 Multi-Occurrence Events, Thresholding, and Averaging

Events that, due to hardware parallelism, may occur at rates greater than one per clock cycle are
termed “multi-occurrence” events. Examples of such events on the Montecito processor are retired
instructions or the number of live entries in the memory request queue.

Thresholding capabilities are available in the Montecito processor’s multi-occurrence counters and
can be used to plot an event distribution histogram. When a non-zero threshold is specified, the
monitor is incremented by one in every cycle in which the observed event count exceeds that
programmed threshold. This allows questions such as “For how many cycles did the memory
request queue contain more than two entries?” or “During how many cycles did the machine retire
more than three instructions?” to be answered. This capability allows microarchitectural buffer
sizing experiments to be supported by real measurements. By running a benchmark with different
threshold values, a histogram can be drawn up that may help to identify the performance “knee” at
a certain buffer size.

For overlapping concurrent events, such as pending memory operations, the average number of
concurrently outstanding requests and the average number of cycles that requests were pending are
of interest. To calculate the average number or latency of multiple outstanding requests in the
memory queue, we need to know the total number of requests (ntotal) and the number of live
requests per cycle (nlive/cycle). By summing up the live requests (nlive/cycle) using a multi-
occurrence counter, Σnlive is directly measured by hardware. We can now calculate the average
number of requests and the average latency as follows:

• Average outstanding requests/cycle = Σnlive/ ∆t

• Average latency per request = Σnlive / ntotal

An example of this calculation is given in Table 3-1 in which the average outstanding requests/
cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles.

The Montecito processor provides the following capabilities to support event rate monitoring:

• Clock cycle counter

• Retired instruction counter

Table 3-1. Average Latency per Request and Requests per Cycle
Calculation Example

Time [Cycles] 1 2 3 4 5 6 7 8

Requests In 1 1 1 1 1 0 0 0

Requests Out 0 0 0 1 1 1 1 1

nlive 1 2 3 3 3 2 1 0

Σnlive 1 3 6 9 12 14 15 15

ntotal 1 2 3 4 5 5 5 5
Reference Manual for Software Development and Optimization 33

Performance Monitoring
• Event occurrence and duration counters

• Multi-occurrence counters with thresholding capability

3.2.1.4 Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether the observed
events are contributing to a performance problem. A commonly used strategy is to plot multiple
event rates and correlate them with the measured instructions per cycle (IPC) rate. If a low IPC
occurs concurrently with a peak of cache miss activity, chances are that cache misses are causing a
performance problem. To eliminate such guess work, the Montecito processor provides a set of
cycle accounting monitors, that break down the number of cycles that are lost due to various kinds
of microarchitectural events. As shown in Figure 3-2, this lets us account for every cycle spent by a
program and therefore provides insight into an application’s microarchitectural behavior. Note that
cycle accounting is different from simple stall or flush duration counting. Cycle accounting is
based on the machine’s actual stall and flush conditions, and accounts for overlapped pipeline
delays, while simple stall or flush duration counters do not. Cycle accounting determines a
program’s cycle breakdown by stall and flush reasons, while simple duration counters are useful in
determining cumulative stall or flush latencies.

The Montecito processor cycle accounting monitors account for all major single and multi-cycle
stall and flush conditions. Overlapping stall and flush conditions are prioritized in reverse pipeline
order, i.e. delays that occur later in the pipe and that overlap with earlier stage delays are reported
as being caused later in the pipeline. The six back-end stall and flush reasons are prioritized in the
following order:

1. Exception/Interruption Cycle: cycles spent flushing the pipe due to interrupts and exceptions.

2. Branch Mispredict Cycle: cycles spent flushing the pipe due to branch mispredicts.

3. Data/FPU Access Cycle: memory pipeline full, data TLB stalls, load-use stalls, and access to
floating-point unit.

4. Execution Latency Cycle: scoreboard and other register dependency stalls.

5. RSE Active Cycle: RSE spill/fill stall.

6. Front End Stalls: stalls due to the back-end waiting on the front end.

Additional front-end stall counters are available which detail seven possible reasons for a front-end
stall to occur. However, the back-end and front-end stall events should not be compared since they
are counted in different stages of the pipeline.

For details, refer to Section 4.6.

Figure 3-2. Itanium® Processor Family Cycle Accounting

001229

30% 25%

100% Execution Time

Inherent Program
Execution Latency

Data Access
Cycles

Branch
Mispredicts

I Fetch
Stalls Other Stalls

20% 15% 10%
34 Reference Manual for Software Development and Optimization

Performance Monitoring
3.2.2 Profiling
Profiling is used by application developers, profile-guided compilers, optimizing linkers, and run-
time systems. Application developers are interested in identifying performance bottlenecks and
relating them back to their source code. Based on profile feedback developers can make changes to
the high-level algorithms and data structures of the program. Compilers can use profile feedback to
optimize instruction schedules by employing advanced features of the Itanium architecture, such as
predication and speculation.

To support profiling, performance monitor counts have to be associated with program locations.
The following mechanisms are supported directly by the Montecito processor’s performance
monitors:

• Program Counter Sampling

• Miss Event Address Sampling: Montecito processor event address registers (EARs) provide
sub-pipeline length event resolution for performance critical events (instruction and data
caches, branch mispredicts, and instruction and data TLBs).

• Event Qualification: constrains event monitoring to a specific instruction address range, to
certain opcodes or privilege levels.

These profiling features are presented in Section 3.2.2.1, Section 3.2.2.2 and Section 3.2.3.3.

3.2.2.1 Program Counter Sampling

Application tuning tools like VTune analyzer and gprof use time-based or event-based sampling of
the program counter and other event counters to identify performance critical functions and basic
blocks. As shown in Figure 3-3, the sampled points can be histogrammed by instruction addresses.
For application tuning, statistical sampling techniques have been very successful, because the
programmer can rapidly identify code hot spots in which the program spends a significant fraction
of its time, or where certain event counts are high.

Program counter sampling points the performance analysts at code hot spots, but does not indicate
what caused the performance problem. Inspection and manual analysis of the hot-spot region along
with a fair amount of guess work are required to identify the root cause of the performance
problem. On the Montecito processor, the cycle accounting mechanism (described in
Section 3.2.1.4) can be used to directly measure an application’s microarchitectural behavior.

The interval timer facilities of the Itanium architecture (ITC and ITM registers) can be used for
time-based program counter sampling. Event-based program counter sampling is supported by a
dedicated performance monitor overflow interrupt mechanism described in detail in Section 7.2.2
“Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])” in Volume 2 of the Intel®
Itanium® Architecture Software Developer’s Manual.
Reference Manual for Software Development and Optimization 35

Performance Monitoring
To support program counter sampling, the Montecito processor provides the following
mechanisms:

• Timer interrupt for time-based program counter sampling

• Event count overflow interrupt for event-based program counter sampling

• Hardware-supported cycle accounting

3.2.2.2 Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of cumulative
microarchitectural behavior, but they do not provide the application developer with pointers to
specific program elements (code locations and data structures) that repeatedly cause
microarchitectural “miss events”. In a cache study of the SPEC92 benchmarks, [Lebeck] used
(trace based) cache miss profiling to gain performance improvements of 1.02 to 3.46 on various
benchmarks by making simple changes to the source code. This type of analysis requires
identification of instruction and data addresses related to microarchitectural “miss events” such as
cache misses, branch mispredicts, or TLB misses. Using symbol tables or compiler annotations
these addresses can be mapped back to critical source code elements. Like Lebeck, most
performance analysts in the past have had to capture hardware traces and resort to trace driven
simulation.

Due to the superscalar issue, deep pipelining, and out-of-order instruction completion of today’s
microarchitectures, the sampled program counter value may not be related to the instruction
address that caused a miss event. On a Pentium® processor pipeline, the sampled program counter
may be off by two dynamic instructions from the instruction that caused the miss event. On a
Pentium® Pro processor, this distance increases to approximately 32 dynamic instructions. On the
Montecito processor, it is approximately 48 dynamic instructions. If program counter sampling is
used for miss event address identification on the Montecito processor, a miss event might be
associated with an instruction almost five dynamic basic blocks away from where it actually
occurred (assuming that 10% of all instructions are branches). Therefore, it is essential for
hardware to precisely identify an event’s address.

The Montecito processor provides a set of event address registers (EARs) that record the
instruction and data addresses of data cache misses for loads, the instruction and data addresses of
data TLB misses, and the instruction addresses of instruction TLB and cache misses. A 16 entry
deep execution trace buffer captures sequences of branch instructions and other instructions and
events which causes changes to execution flow. Table 3-2 summarizes the capabilities offered by
the Montecito processor EARs and the execution trace buffer. Exposing miss event addresses to
software allows them to be monitored either by sampling or by code instrumentation. This

Figure 3-3. Event Histogram by Program Counter

Event
Frequency

Examples:
Cache Misses

TLB Misses

Address Space
36 Reference Manual for Software Development and Optimization

Performance Monitoring
eliminates the need for trace generation to identify and solve performance problems and enables
performance analysis by a much larger audience on unmodified hardware.

The Montecito processor EARs enable statistical sampling by configuring a performance counter
to count, for instance, the number of data cache misses or retired instructions. The performance
counter value is set up to interrupt the processor after a predetermined number of events have been
observed. The data cache event address register repeatedly captures the instruction and data
addresses of actual data cache load misses. Whenever the counter overflows, miss event address
collection is suspended until the event address register is read by software (this prevents software
from capturing a miss event that might be caused by the monitoring software itself). When the
counter overflows, an interrupt is delivered to software, the observed event addresses are collected,
and a new observation interval can be setup by rewriting the performance counter register. For
time-based (rather than event-based) sampling methods, the event address registers indicate to
software whether or not a qualified event was captured. Statistical sampling can achieve arbitrary
event resolution by varying the number of events within an observation interval and by increasing
the number of observation intervals.

3.2.3 Event Qualification
In the Montecito processor, many of the performance monitoring events can be qualified in a
number of ways such that only a subset of the events are counted using performance monitoring
counters. As shown in Figure 3-4 events can be qualified for monitoring based on instruction
address range, instruction opcode, data address range, event-specific “unit mask” (umask), the
privilege level and instruction set the event was caused by, and the status of the performance
monitoring freeze bit (PMC0.fr). The following paragraphs describes these capabilities in detail.

• Itanium Instruction Address Range Check: The Montecito processor allows event monitoring
to be constrained to a programmable instruction address range. This enables monitoring of
dynamically linked libraries (DLLs), functions, or loops of interest in the context of a large
Itanium architecture-based application. The Itanium instruction address range check is applied
at the instruction fetch stage of the pipeline and the resulting qualification is carried by the
instruction throughout the pipeline. This enables conditional event counting at a level of
granularity smaller than dynamic instruction length of the pipeline (approximately 48
instructions). The Montecito processor’s instruction address range check operates only during

Table 3-2. Montecito Processor EARs and Branch Trace Buffer

Event Address Register Triggers on What is Recorded

Instruction Cache Instruction fetches that miss
the L1 instruction cache
(demand fetches only)

Instruction Address
Number of cycles fetch was in flight

Instruction TLB (ITLB) Instruction fetch missed L1
ITLB (demand fetches only)

Instruction Address
What serviced L1 ITLB miss: L2 ITLB VHPT
or software

Data Cache Load instructions that miss L1
data cache

Instruction Address
Data Address
Number of cycles load was in flight.

Data TLB
(DTLB)

Data references that miss
L1 DTLB

Instruction Address
Data Address
What serviced L1 DTLB miss: L2 DTLB,
VHPT or software

Execution
Trace
Buffer

Branch Outcomes
rfi, exceptions, failed “chk”
instructions which cause a
change in execution flow

Source instruction address of the event
Target Instruction Address of the event
Mispredict status and reason for branches
Reference Manual for Software Development and Optimization 37

Performance Monitoring
Itanium architecture-based code execution, i.e. when PSR.is is zero. For details, see
Section 3.3.5.

• Itanium Instruction Opcode Match: The Montecito processor provides two independent
Itanium instruction opcode match ranges, each of which match the currently issued instruction
encodings with a programmable opcode match and mask function. The resulting match events
can be selected as an event type for counting by the performance counters. This allows
histogramming of instruction types, usage of destination and predicate registers as well as
basic block profiling (through insertion of tagged NOPs). The opcode matcher operates only
during Itanium architecture-based code execution, i.e. when PSR.is is zero. Details are
described in Section 3.3.6.

• Itanium Data Address Range Check: The Montecito processor allows event collection for
memory operations to be constrained to a programmable data address range. This enables
selective monitoring of data cache miss behavior of specific data structures. For details, see
Section 3.3.7.

• Event Specific Unit Masks: Some events allow the specification of “unit masks” to filter out
interesting events directly at the monitored unit. As an example, the number of counted bus
transactions can be qualified by an event specific unit mask to contain transactions that

Figure 3-4. Montecito Processor Event Qualification

000987a

Itanium® Instruction
Address Range CheckInstruction Address

Itanium Instruction
Opcode MatchInstruction Opcode

Is Itanium instruction pointer
in IBR range?

Does Itanium opcode match?

Itanium Data Address
Range Check

(Memory Operations Only)
Data Address Is Itanium data address

in DBR range?

Event Spefic "Unit Mask"Event Did event happen and qualify?

Privilege Level CheckCurrent Privilege
 Level

Executing at monitored
privilege level?

Instruction Set CheckCurrent Instruction
Set (Itanium or IA-32)

Executing in monitored
instruction set?

Event Count FreezePerformance Monitor
Freeze Bit (PMC0.fr)

Is event monitoring enabled?

YES, all of the above are true;
this event is qualified.
38 Reference Manual for Software Development and Optimization

Performance Monitoring
originated from any bus agent, from the processor itself, or from other I/O bus masters. In this
case, the bus unit uses a three-way unit mask (any, self, or I/O) that specifies which
transactions are to be counted. In the Montecito processor, events from the branch, memory
and bus units support a variety of unit masks. For details, refer to the event pages in Chapter 4

• Privilege Level: Two bits in the processor status register(PSR) are provided to enable selective
process-based event monitoring. The Montecito processor supports conditional event counting
based on the current privilege level; this allows performance monitoring software to break
down event counts into user and operating system contributions. For details on how to
constrain monitoring by privilege level refer to Section 3.3.1

• Instruction Set: The Montecito processor supports conditional event counting based on the
currently executing instruction set (Itanium or IA-32) by providing two instruction set mask
bits for each event monitor. This allows performance monitoring software to break down event
counts into Itanium architecture and IA-32 contributions. For details, refer to Section 3.3.1.

• Performance Monitor Freeze: Event counter overflows or software can freeze event
monitoring. When frozen, no event monitoring takes place until software clears the monitoring
freeze bit (PMC0.fr). This ensures that the performance monitoring routines themselves, e.g.
counter overflow interrupt handlers or performance monitoring context switch routines, do not
“pollute” the event counts of the system under observation. For details refer to Section 7.2.4 of
Volume 2 of the Intel® Itanium® Architecture Software Developer’s Manual.

3.2.3.1 Combining Opcode Matching, Instruction, and Data Address Range
Check

The Montecito processor allows various event qualification mechanisms to be combined by
providing the instruction tagging mechanism shown in Figure 3-5.

Figure 3-5. Instruction Tagging Mechanism in the Montecito Processor

IBRP0
PMC38

Opcode
Matcher0
(PMC32,33,36)

Data Address
Range checkers
DBRs, PMC41)

IBRP1
PMC38

Opcode
Matcher1
(PMC34,35,36)

IBRP2
PMC38

Opcode
Matcher0
(PMC32,33,36)

IBRP3
PMC38

Opcode
Matcher1
(PMC34,35,36)

Memory
Eventi

Eventj

Eventk

Counter
(Pmdi)

Privilege
Level &
Instr. Set
Check
(PMC.plm
PMC.ism)

Event
Select
(PMCi.es)
Reference Manual for Software Development and Optimization 39

Performance Monitoring
During Itanium instruction execution, the instruction address range check is applied first. This is
applied separately for each IBR pair (IBRP) to generate 4 independent tag bits which flow down
the machine in four tag channels. Tags in the four tag channels are then passed to two opcode
matchers that combine the instruction address range check with the opcode match and generate
another set of four tags. This is done by combining tag channels 0 and 2 with first opcode match
registers and tag channels 1 and 3 with the second opcode match registers as shown in Figure 3-5.
Each of the 4 combined tags in the four tag channels can be counted as a retired instruction count
event (for details refer to event description “IA64_TAGGED_INST_RETIRED”).

Combined Itanium processor address range and opcode match tags in tag channel 0, qualifies all
downstream pipeline events. Events in the memory hierarchy (L1 and L2 data cache and data TLB
events can further be qualified using a data address DBR RangeTag).

As summarized in Figure 3-5, data address range checking can be combined with opcode matching
and instruction range checking on the Montecito processor. Additional event qualifications based
on the current privilege level can be applied to all events and are discussed in Section 3.2.3.2.

1. For all cases where PMC32.ig_ad is set to 0, PMC32.inv must be set to 0 if address range inversion is not
needed.

2. See column 2 for the value of PMC32.ig_ad bit field.

Table 3-3. Montecito Processor Event Qualification Modes

Event Qualification
Modes

Instruction
Address
Range
Check
Enable

(in Opcode
Match)

PMC32.ig_
ad(1)

Instruction
Address
Range
Check
Config
PMC38

Tag Channel
Opcode Match

Enable
PMC36

Opcode
Match

PMC32,33
PMC34,35

(2)

Data Address
Range Check

[PMC41.e_dbrpj
PMC41.cfg_dtagj]
(mem pipe events

only)

Unconstrained
Monitoring, channel 0 (all
events)

1 x x X [1,11] or [0,xx]

Unconstrained
Monitoring, channeli
(i=0,1,2,3; Limited events
only)

0 ig_ibrpi=1 Chi_ig_OPC=1 X [1,11] or [0,xx]

Instruction Address
Range Check only;
channel 0

0 ig_ibrp0=0 Ch0_ig_OPC=1 x [1,00]

Opcode Matching only
Channeli

0 ig_ibrpi=1 Chi_ig_OPC=0 Desired
Opcodes

[1,01]

Data Address Range
Check only

1 x x x [1,10]

Instruction Address
Range Check and
Opcode Matching,
channel0

0 ig_ibrp0=0 Ch0_ig_OPC=0 Desired
Opcodes

[1,01]

Instruction and Data
Address Range Check

0 ig_ibrp0=0 Ch0_ig_OPC=1 x [1,00]

Opcode Matching and
Data Address Range
Check

0 x Ch0_ig_OPC=0 Desired
Opcodes

[1,00]
40 Reference Manual for Software Development and Optimization

Performance Monitoring
3.2.3.2 Privilege Level Constraints

Performance monitoring software cannot always count on context switch support from the
operating system. In general, this has made performance analysis of a single process in a multi-
processing system or a multi-process workload impossible. To provide hardware support for this
kind of analysis, the Itanium architecture specifies three global bits (PSR.up, PSR.pp, DCR.pp) and
a per-monitor “privilege monitor” bit (PMCi.pm). To break down the performance contributions of
operating system and user-level application components, each monitor specifies a 4-bit privilege
level mask (PMCi.plm). The mask is compared to the current privilege level in the processor status
register (PSR.cpl), and event counting is enabled if PMCi.plm[PSR.cpl] is one. The Montecito
processor performance monitor control is discussed in Section 3.3.1.

PMC registers can be configured as user-level monitors (PMCi.pm is 0) or system-level monitors
(PMCi.pm is 1). A user-level monitor is enabled whenever PSR.up is one. PSR.up can be
controlled by an application using the “sum”/”rum” instructions. This allows applications to
enable/disable performance monitoring for specific code sections. A system-level monitor is
enabled whenever PSR.pp is one. PSR.pp can be controlled at privilege level 0 only, which allows
monitor control without interference from user-level processes. The pp field in the default control
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This allows events
generated during interruptions to be broken down separately: if DCR.pp is 0, events during
interruptions are not counted; if DCR.pp is 1, they are included in the kernel counts.

As shown in Figure 3-6, Figure 3-7, and Figure 3-8, single process, multi-process, and system-
level performance monitoring are possible by specifying the appropriate combination of PSR and
DCR bits. These bits allow performance monitoring to be controlled entirely from a kernel level
device driver, without explicit operating system support. Once the desired monitoring
configuration has been setup in a process’ processor status register (PSR), “regular” unmodified
operating context switch code automatically enables/disables performance monitoring.

With support from the operating system, individual per-process breakdown of event counts can be
generated as outlined in the chapter on performance monitoring in the Intel® Itanium® Architecture
Software Developer’s Manual.

3.2.3.3 Instruction Set Constraints

Instruction set constraints are not fully supported in Montecito and the corresponding PMC register
instruction set mask (PMCi.ism) should be set to Itanium architecture only (‘10) to ensure correct
operation. Any other values for these bits may cause undefined behavior.
Reference Manual for Software Development and Optimization 41

Performance Monitoring
Figure 3-6. Single Process Monitor

000989

Figure 3-7. Multiple Process Monitor

000990

user-level, cpl=3
(application)

kernel-level, cpl=0
(OS)

interrupt-level, cpl=0
(handlers)

Proc A Proc B Proc C

user-level, cpl=3
(application)

kernel-level, cpl=0
(OS)

interrupt-level, cpl=0
(handlers)

Proc A Proc B Proc C

user-level, cpl=3
(application)

kernel-level, cpl=0
(OS)

interrupt-level, cpl=0
(handlers)

Proc A Proc B Proc C

PSRA.up=1, others 0
PMC.pm=0

PSRA.pp=1, others 0
PMC.pm=1
PMC.plm=1001

DCR.pp=0 DCR.pp=0

PSRA.pp=1, others 0
PMC.pm=1
PMC.plm=1001
DCR.pp=1

PMC.plm=1000

user-level, cpl=3
(application)

kernel-level, cpl=0
(OS)

interrupt-level, cpl=0
(handlers)

Proc A Proc B Proc C

user-level, cpl=3
(application)

kernel-level, cpl=0
(OS)

interrupt-level, cpl=0
(handlers)

Proc A Proc B Proc C

user-level, cpl=3
(application)

kernel-level, cpl=0
(OS)

interrupt-level, cpl=0
(handlers)

Proc A Proc B Proc C

PSRA/B.up=1, others 0
PMC.pm=0

PSRA/B.pp=1, others 0
PMC.pm=1
PMC.plm=1001

DCR.pp=0 DCR.pp=0

PSRA/B.pp=1, others 0
PMC.pm=1
PMC.plm=1001
DCR.pp=1

PMC.plm=1000
42 Reference Manual for Software Development and Optimization

Performance Monitoring
3.2.4 References
• [gprof] S.L. Graham S.L., P.B. Kessler and M.K. McKusick, “gprof: A Call Graph Execution

Profiler”, Proceedings SIGPLAN’82 Symposium on Compiler Construction; SIGPLAN
Notices; Vol. 17, No. 6, pp. 120-126, June 1982.

• [Lebeck] Alvin R. Lebeck and David A. Wood, “Cache Profiling and the SPEC benchmarks:
A Case Study”, Tech Report 1164, Computer Science Dept., University of Wisconsin -
Madison, July 1993.

• [VTune] Mark Atkins and Ramesh Subramaniam, “PC Software Performance Tuning”, IEEE
Computer, Vol. 29, No. 8, pp. 47-54, August 1996.

• [WinNT] Russ Blake, “Optimizing Windows NT(tm)”, Volume 4 of the Microsoft “Windows
NT Resource Kit for Windows NT Version 3.51”, Microsoft Press, 1995.

3.3 Performance Monitor State
Itanium Performance Monitoring architecture described in Volume 2 of the Intel® Itanium®
Architecture Software Developer’s Manual defines two sets of performance monitor registers;
Performance Monitor Configuration (PMC) registers to configure the monitoring and Performance
Monitor Data (PMD) registers to provide data values from the monitors. Additionally, the
architecture also allows for architectural as well as model specific registers. Complying with this
architectural definition, Montecito provides both kind of PMCs and PMDs. As shown in Figure 3-9
the Montecito processor provides 12 48-bit performance counters (PMC/PMD4-15 pairs), and a set
of model-specific monitoring registers.

Table 3-4 defines the PMC/PMD register assignments for each monitoring feature. The interrupt
status registers are mapped to PMC0,1,2,3. The 12 generic performance counter pairs are assigned to
PMC/PMD4-15. The Event Address Registers (EARs) and the Execution Trace Buffer (ETB) are
controlled by three configuration registers (PMC37,40,39). Captured event addresses and cache miss
latencies are accessible to software through five event address data registers (PMD34,35,32,33,36)

Figure 3-8. System Wide Monitor

000991

user-level, cpl=3
(application)

kernel-level, cpl=0
(OS)

interrupt-level, cpl=0
(handlers)

Proc A Proc B Proc C

user-level, cpl=3
(application)

kernel-level, cpl=0
(OS)

interrupt-level, cpl=0
(handlers)

Proc A Proc B Proc C

user-level, cpl=3
(application)

kernel-level, cpl=0
(OS)

interrupt-level, cpl=0
(handlers)

Proc A Proc B Proc C

All PSR.up=1
PMC.pm=0

All PSR.pp=1
PMC.pm=1
PMC.plm=1001

DCR.pp=0 DCR.pp=0

All PSR.pp=1
PMC.pm=1
PMC.plm=1001
DCR.pp=1

PMC.plm=1000
Reference Manual for Software Development and Optimization 43

Performance Monitoring
and a branch trace buffer (PMD48-63). On the Montecito processor, monitoring of some events can
additionally be constrained to a programmable instruction address range by appropriately setting
the instruction breakpoint registers (IBR) and the instruction address range check register (PMC38)
and turning on the checking mechanism in the opcode match registers (PMC32,33,34,35). Two
opcode match register sets and an opcode match configuration register (PMC36) allow monitoring
of some events to be qualified with a programmable opcode. For memory operations, events can be
qualified by a programmable data address range by appropriate setting of the data breakpoint
registers (DBRs) and the data address range configuration register (PMC41).

Montecito, being a processor capable of running two threads, provides the illusion of having two
processors by providing exactly the same set of performance monitoring features and structures
separately for each thread.

Table 3-4. Montecito Processor Performance Monitor Register Set

Monitoring
Feature

Configuration
Registers

(PMC)

Data
Registers

(PMD)
Description

Interrupt Status PMC0,1,2,3 none See Section 3.3.3, “Performance Monitor Event Counting
Restrictions Overview”

Event Counters PMC4-15 PMD4-15 See Section 3.3.2, “Performance Counter Registers”

Opcode
Matching

PMC32,33,34,35,
36

none See Section 3.3.6, “Opcode Match Check
(PMC32,33,34,35,36)”

Instruction EAR PMC37 PMD34,35 See Section 3.3.8, “Instruction EAR (PMC37/
PMD32,33,36)”

Data EAR PMC40 PMD32,33,36 See Section 3.3.9, “Data EAR (PMC40, PMD32,33,36)”

Branch Trace
Buffer

PMC39 PMD48-63,39 See Section 3.3.10, “Execution Trace Buffer
(PMC39,42,PMD48-63,38,39)”

Instruction
Address Range
Check

PMC38 none See Section 3.3.5, “Instruction Address Range Matching”

Memory Pipeline
Event
Constraints

PMC41 none See Section 3.3.7, “Data Address Range Matching
(PMC41)”

Retired IP EAR PMC42 PMD48-63,39 See Section 3.3.10.2, “IP Event Address Capture
(PMC42.mode=‘1xx)”
44 Reference Manual for Software Development and Optimization

Performance Monitoring
Figure 3-9. Montecito Processor Performance Monitor Register Mode

pmc0
pmc1
pmc2
pmc3

pmc4
pmc5
.........
pmc15

Perf. Counter

Perf. Counter Overflow
Status Regs

Conf. Regs
pmd4
pmd5
.........
pmd15

Perf. Counter
Data. Regs

pmc38
pmc41

Instr/Data Addr. Range
Check Conf. Regs

pmd38
pmd39

ETB/IP-EAR Support Regs

pmd32
pmd33
pmd34
pmd35

Inst/Data EAR
Data. Regs

pmd36
pmc32
pmc33
pmc34
pmc35

OpCode Match
Conf. Regs

pmc37
pmc40

Instr/Data EAR
Conf. Regs

pmc36

pmd48
pmd49
.........
pmd63

ETB/IP-EAR
Data Regs

pmc39
ETB Conf. Reg

pmc42
IP-EAR Conf. Reg

Montecito Processor
Specific Performance
Monitoring Reg. Set

PSR
Processor Status Reg.

DCR
Default Conf. Reg.

PMV
Perf. Mon. Vector Reg.

Montecito Processor
Performance Monitoring
Generic Reg. Set
Reference Manual for Software Development and Optimization 45

Performance Monitoring
3.3.1 Performance Monitor Control and Accessibility
As in other IPF processors, Montecito event collection is controlled by the Performance Monitor
Configuration (PMC) registers and the processor status register (PSR). Four PSR fields (PSR.up,
PSR.pp, PSR.cpl and PSR.sp) and the performance monitor freeze bit (PMC0.fr) affect the
behavior of all performance monitor registers.

Per-monitor control is provided by three PMC register fields (PMCi.plm, PMCi.ism, and
PMCi.pm). Event collection for a monitor is enabled under the following constraints on the
Montecito processor:

Monitor Enablei =(not PMC0.fr) and PMCi.plm[PSR.cpl] and ((PMCi.ism=í10) or
(i=39)or (i=37)) and ((not(PMCi.pm) and PSR.up) or (PMCi.pm and PSR.pp))

Figure 3-10 defines the PSR control fields that affect performance monitoring. For a detailed
definition of how the PSR bits affect event monitoring and control accessibility of PMD registers,
please refer to Section 3.3.2 and Section 7.2.1 of Volume 2 of the Intel® Itanium® Architecture
Software Developer’s Manual.

Table 3-5 defines per monitor controls that apply to PMC4-15,,32-42. As defined in Table 3-4 each of
these PMC registers controls the behavior of its associated performance monitor data registers
(PMD). The Montecito processor model-specific PMD registers associated with instruction/data
EARs and the branch trace buffer (PMD32-39,48-63) can be read only when event monitoring is
frozen (PMC0.fr is one).

3.3.2 Performance Counter Registers
The PMUs are not shared between hardware threads. Each hardware thread has its own set of 12
generic performance counter (PMC/PMD4-15) pairs.

Figure 3-10. Processor Status Register (PSR) Fields for Performance Monitoring
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved other pp sp other reserved other upoth rv
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved other is cpl

Table 3-5. Performance Monitor PMC Register Control Fields (PMC4-15)

Field Bits Description

plm 3:0 Privilege Level Mask - controls performance monitor operation for a specific privilege level.
Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to privilege
level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor is enabled at
that privilege level. Writing zeros to all plm bits effectively disables the monitor. In this state,
the Montecito processor will not preserve the value of the corresponding PMD register(s).

pm 6 Privileged monitor - When 0, the performance monitor is configured as a user monitor and
enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as a
privileged monitor, enabled by PSR.pp, and PMD can only be read by privileged software.
Any read of the PMD by non-privileged software in this case will return 0.
NOTE: In PMC37 this field is implemented in bit [4].

ism 25:24 Instruction Set Mask - Should be set to ‘10 for proper operation. Undefined behavior with
other values.
NOTE: PMC37 and PMC39 do not have this field.
46 Reference Manual for Software Development and Optimization

Performance Monitoring
Due to the complexities of monitoring in an MT “aware” environment, the PMC/PMD pairs are
split according to differences in functionality. These PMC/PMD pairs can be divided into two
categories; duplicated counters (PMC/PMD4-9)and banked counters (PMC/PMD10-15).

• Banked counters (PMC/PMD10-15): The banked counter capabilities are somewhat limited.
These PMDs cannot increment when their thread is in the background. That is, if Thread 0 is
placed in the background, Thread 0’s PMD10 cannot increment until the thread is brought back
to the foreground by hardware. Due to this fact, the banked counters should not be used to
monitor a thread specific event (.all is set to 0) that could occur when its thread is in the
background (e.g. L3_MISSES).

• Duplicated counters (PMC/PMD4-9): In contrast, duplicated counters can increment when
their thread is in the background. As such, they can be used to monitor thread specific events
which could occur even when the thread those events belong to is not currently active.

PMC/PMD pairs are not entirely symmetrical in their ability to count events. Please refer to
Section 3.3.3 for more information.

Figure 3-11 and Table 3-6 define the layout of the Montecito processor Performance Counter
Configuration Registers (PMC4-15). The main task of these configuration registers is to select the
events to be monitored by the respective performance monitor data counters. Event selection (es),
unit mask (umask), and MESI fields in the PMC registers perform the selection of these events.
The rest of the fields in PMCs specify under what conditions the counting should be done (plm,
pm, ism), by how much the counter should be incremented (threshold), and what need to be
done if the counter overflows (ev, oi).

Figure 3-11. Montecito Processor Generic PMC Registers (PMC4-15)

30 27 26
2
5

2
4 23

2
2

2
0

1
9

1
6

1
5 8 7 6 5 4 3 0

PMC4-15 M E S I all ism ig thres-
hold

umask es ig pm oi ev plm

1 2 1 3 4 8 1 1 1 1 4

Table 3-6. Montecito Processor Generic PMC Register Fields (PMC4-15) (Sheet 1 of 2)

Field Bits Description

plm 3:0 Privilege Level Mask. See Table 3-5 “Performance Monitor PMC Register Control Fields
(PMC4-15).”

ev 4 External visibility - When 1, an external notification (if the capability is present) is
provided whenever the counter overflows. External notification occurs regardless of the
setting of the oi bit (see below).

oi 5 Overflow interrupt - When 1, a Performance Monitor Interrupt is raised and the
performance monitor freeze bit (PMC0.fr) is set when the monitor overflows. When 0, no
interrupt is raised and the performance monitor freeze bit (PMC0.fr) remains
unchanged. Counter overflows generate only one interrupt. Setting the corresponding
PMC0 bit on an overflow will be independent of this bit.

pm 6 Privilege Monitor. See Table 3-5 “Performance Monitor PMC Register Control Fields
(PMC4-15).”.

ig 7 Read zero; writes ignored.

es 15:8 Event select - selects the performance event to be monitored.
Montecito processor event encodings are defined in Chapter 4, “Performance Monitor
Events.”

umask 19:16 Unit Mask - event specific mask bits (see event definition for details)
Reference Manual for Software Development and Optimization 47

Performance Monitoring
Figure 3-12 and Table 3-7 define the layout of the Montecito processor Performance Counter Data
Registers (PMD4-15). A counter overflow occurs when the counter wraps (i.e a carry out from bit
46 is detected). Software can force an external interruption or external notification after N events
by preloading the monitor with a count value of 247 - N. Note that bit 47 is the overflow bit and
must be initialized to 0 whenever there is a need to initialize the register.

When accessible, software can continuously read the performance counter registers PMD4-15
without disabling event collection. Any read of the PMD from software without the appropriate
privilege level will return 0 (See “plm” in Table 3-6). The processor ensures that software will see
monotonically increasing counter values.

threshold 22:20 Threshold -enables thresholding for “multi-occurrence” events.
When threshold is zero, the counter sums up all observed event values. When the
threshold is non-zero, the counter increments by one in every cycle in which the
observed event value exceeds the threshold.

ig 23 Read zero, Writes ignored.

ism 25:24 Instruction Set Mask. See Table 3-5 “Performance Monitor PMC Register Control Fields
(PMC4-15).”.

all 26 All threads; This bit selects whether or not to monitor just the self thread or both threads.
This bit is applicable only for Duplicated counters (PMC4-9)
If 1, events from both threads are monitored; If 0, only self thread is monitored. Filters
(IAR/DAR/OPC) are only associated with the thread they belong to. If filtering of an
event with .all enabled is desired, both of the thread’s filters should be given matching
configurations.

MESI 30:27 Umask for MESI filtering; Only the events with this capability are affected.
[27] : I; [28] = S; [29] = E; [30] = M
If the counter is measuring an event implying that a cache line is being replaced, the
filter applies to bits in the existing cache line and not the line being brought in.
Also note, for the events affected by MESI filtering, if a user wishes to simply captured
all occurrences of the event the filter must be set to b1111.

ig 63:31 Read zero; writes ignored.

Table 3-6. Montecito Processor Generic PMC Register Fields (PMC4-15) (Sheet 2 of 2)

Field Bits Description

Figure 3-12. Montecito Processor Generic PMD Registers (PMD4-15)
6
3

4
8 47

4
6 0

PMD4-15 sxt47 ov Count
16 1 47

Table 3-7. Montecito Processor Generic PMD Register Fields

Field Bits Description

sxt47 63:48 Writes are ignored, Reads return the value of bit 46, so count values appear as sign
extended.

ov 47 Overflow bit (carry out from bit 46).
NOTE: When writing to a PMD, always write 0 to this bit. Reads will return the value of
bit 46. DO NOT USE this field to properly determine whether the counter has
overflowed or not. Use the appropriate bit from PMC0 instead.

count 46:0 Event Count. The counter is defined to overflow when the count field wraps (carry out
from bit 46).
48 Reference Manual for Software Development and Optimization

Performance Monitoring
3.3.3 Performance Monitor Event Counting Restrictions
Overview
Similar to other Itanium brand products, not all performance monitoring events can be monitored
using any generic performance monitor counters (PMD4-15). The following need to be noted when
determining which counter to be used to monitor events. This is just an overview and further details
can be found under the specific event/event type.

• ER/SI/L2D events can only be monitored using PMD4-9 (These are the events with event
select IDs belong to ‘h8x, ‘h9x, ‘hax, ‘hbx, ‘hex and ‘hfx)

• To monitor any L2D events it is necessary to monitor at least one L2D event in either PMC4 or
PMC6.(See Section 4.8.4 for more information)

• To monitor any L1D events it is necessary to program PMC5/PMD5 to monitor one L1D
event. (See Section 4.8.2 for more information)

• In a MT enabled system, if a “floating” event is monitoring in a banked counter (PMC/PMD10-
15), the value may be incorrect. To insure accuracy, these events should be measured by a
duplicated counter (PMC/PMD4-9).

• The CYCLES_HALTED event can only be monitored in PMD10. If measured by any other
PMD, the count value is undefined.

3.3.4 Performance Monitor Overflow Status Registers (PMC0,1,2,3)
As previously mentioned, the Montecito processor supports 12 performance monitoring counters
per thread. The overflow status of these 12 counters is indicated in register PMC0. As shown in
Figure 3-13 and Table 3-8 only PMC0[15:4,0] bits are populated. All other overflow bits are
ignored, i.e. they read as zero and ignore writes.

Figure 3-13. Montecito Processor Performance Monitor Overflow Status Registers (PMC0,1,2,3)
63 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ig Overflow ig fr
4 3 1

ig (PMC1)

ig (PMC2)

ig (PMC3)

Table 3-8. Montecito Processor Performance Monitor Overflow Register Fields (PMC0,1,2,3)
(Sheet 1 of 2)

Register Field Bits HW
Reset Description

PMC0 fr 0 0 Performance Monitor “freeze” bit - When 1, event monitoring is
disabled. When 0, event monitoring is enabled. This bit is set by
hardware whenever a performance monitor overflow occurs and its
corresponding overflow interrupt bit (PMC.oi) is set to one. SW is
responsible for clearing it. When the PMC.oi bit is not set, then
counter overflows do not set this bit.

PMC0 ig 3:1 - Read zero, Writes ignored.
Reference Manual for Software Development and Optimization 49

Performance Monitoring
3.3.5 Instruction Address Range Matching
The Montecito processor allows event monitoring to be constrained to a range of instruction
addresses. Once programmed with this constraints, only the events generated by instructions with
their addresses within this range are counted using PMD4-15. The four architectural Instruction
Breakpoint Register Pairs IBRP0-3 (IBR0-7) are used to specify the desired address ranges. Using
these IBR pairs it is possible to define up to 4 different address ranges (only 2 address ranges in
“fine mode”) that can be used to qualify event monitoring.

Once programmed, each of these 4 address restrictions can be applied separately to all events that
are identified to do so. The event, IA64_INST_RETIRED, is the only event that can be constrained
using any of the four address ranges. Events described as prefetch events can only be constrained
using the address range 2 (IBRP1). All other events can only use the first address range (IBRP0)
and this range will be considered as the default for this section.

In addition to constraint events based on instruction addresses, Montecito processor allows event
qualification based on the opcode of the instruction and the address of the data the memory related
instructions accessed. These are done by applying these constraints to the same 4 instruction
address ranges described in this section. These features are explained in Section 3.3.6 and
Section 3.3.7.

3.3.5.1 PMC38

Performance Monitoring Configuration register PMC38 is the main control register for Instruction
Address Range matching feature. In addition to this register, PMC32 also controls certain aspects of
this feature as explained in the following paragraphs.

Figure 3-14 and Table 3-10 describe the fields of register PMC38. For the proper use of instruction
address range checking described in this section, PMC38 is expected to be programmed to 0xdb6 as
the default value.

Instruction address range checking is controlled by the “ignore address range check” bit
(PMC32.ig_ad and PMC38.ig_ibrp0). When PMC32.ig_ad is one (or PMC14.ig_ibrp0 is one), all
instructions are included (i.e. un-constrained) regardless of IBR settings. In this mode, events from
both IA-32 and Itanium architecture-based code execution contribute to the event count. When
both PMC32.ig_ad and PMC38.ig_ibrp0 are zero, the instruction address range check based on the
IBRP0 settings is applied to all Itanium processor code fetches. In this mode, IA-32 instructions are
never tagged, and, as a result, events generated by IA-32 code execution are ignored. Table 3-9
defines the behavior of the instruction address range checker for different combinations of
PSR.is and PMC32.ig_ad or PMC38.ig_ibrp0.

PMC0 overflow 15:4 0 Event Counter Overflow - When bit n is one, indicate that the PMDn
overflowed. This is a bit vector indicating which performance monitor
overflowed. These overflow bits are set on their corresponding
counters overflow regardless of the state of the PMC.oi bit. Software
may also set these bits. These bits are sticky and multiple bits may
be set.

PMC0 ig 63:16 - Read zero, Writes ignored.

PMC1,2,3 ig 63:0 - Read zero, Writes ignored.

Table 3-8. Montecito Processor Performance Monitor Overflow Register Fields (PMC0,1,2,3)
(Sheet 2 of 2)

Register Field Bits HW
Reset Description
50 Reference Manual for Software Development and Optimization

Performance Monitoring
The processor compares every Itanium instruction fetch address IP{63:0} against the address range
programmed into the architectural instruction breakpoint register pair IBRP0. Regardless of the
value of the instruction breakpoint fault enable (IBR x-bit), the following expression is evaluated
for the Montecito processor’s IBRP0:

IBRmatch = match(IP,IBR0.addr, IBR1.mask, IBR1.plm)

The events which occur before the instruction dispersal stage will fire only if this qualified match
(IBRmatch) is true. This qualified match will be ANDed with the result of Opcode Matcher
PMC32,33 and further qualified with more user definable bits (See Table 3-10) before being
distributed to different places. The events which occur after instruction dispersal stage, will use this
new qualified match (IBRP0-OpCode0 match).

Table 3-9. Montecito Processor Instruction Address Range Check by Instruction Set

PSR.is

PMC32.ig_ad OR
PMC38.ig_ibrp0 0 (IA-64) 1 (IA-32)

0 Tag only Itanium instructions if they match
IBR range

DO NOT tag any IA-32 operations.

1 Tag all Itanium and IA-32 instructions. Ignore IBR range.

Figure 3-14. Instruction Address Range Configuration Register (PMC38)
63 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved fine reser
ved

ibrp3reser
ved

ibrp2reser
ved

ibrp1reser
ved

ibrp0 reser
ved

50 1 2 1 2 1 2 1 2 1 1

Table 3-10. Instruction Address Range Configuration Register Fields (PMC38) (Sheet 1 of 2)

Field Bits Description

ig_ibrp0 1 1: No constraint
0: Address range 0 based on IBRP0 enabled

ig_ibrp1 4 1: No constraint
0: Address range 1 based on IBRP1 enabled

ig_ibrp2 7 1: No constraint
0: Address range2 based on IBRP2 is enabled
Reference Manual for Software Development and Optimization 51

Performance Monitoring
IBRP0 match is generated in the following fashion. Note that unless fine mode is used, arbitrary
range checking cannot be performed since the mask bits are in powers of 2. In fine mode, two IBR
pairs are used to specify the upper and lower limits of a range within a page (the upper bits of lower
and upper limits must be exactly the same).

If PMC38.Fine=0,

IBRmatch0 = match[IP(63:0), IBR0(63:0), IBR1(55:0)]

Else,

IBRmatch0 = match[IP(63:16), IBR0(63:16), IBR1(55:16)] and

 [IP(15:0) > IBR0(15:0)] and [IP(15:0) < IBR4(15:0)]

IBRadrmatch0 = IBRmatch0

ibrp0 match = (PMC32.ig_ad or PMC38.ig_ibrp0) or

(IBRadmatch0 and match[PSR.cpl, IBR1(59:56)])

The instruction range checking considers the address range specified by IBRPi only if
PMC32.ig_ad(for i=0), PMC38.ig_ibrpi and IBRPi x-bits are all 0s. If the IBRPi x-bits is set, this
particular IBRP would be used for debug purposes as described in IA64 architecture.

3.3.5.2 Use of IBRP0 For Instruction Address Range Check - Exception 1

The address range constraint for prefetch events is on the target address of these events rather than
the address of the prefetch instruction. Therefore IBRP1 must be used for constraining these events.
Calculation of IBRP1 match is the same as that of IBRP0 match with the exception that we use
IBR2,3,6 instead of IBR0,1,4.

Note: Register PMC38 must contain the predetermined value 0x0db6. If software modifies any bits not
listed in Table 3-10 processor behavior is not defined. It is illegal to have PMC41[48:45]=0000 and
PMC32.ig_ad=0 and ((PMC38[2:1]=10 or 00) or (PMC38[5:4]=10 or 00)); this produces
inconsistencies in tagging I-side events in L1D and L2.

ig_ibrp3 10 1: No constraint
0: address range 3 based on IBRP3 is enabled

fine 13 Enable fine-mode address range checking (non power of 2)
1: IBRP0,2 and IBRP1,3 are paired to define two address ranges
0: Normal mode
If set to 1, IBRP0 and iIBRP2 define the lower and upper limits for
address range0; Similarly, IBRP1 and IBRP3 define the lower and
upper limits for address range1.
Bits [63:16] of upper and lower limits need to be exactly the same but
could have any value. Bits[15:0] of upper limit needs to be greater than
bits[15:0] of lower limit. If an address falls in between the upper and
lower limits then a match will be signaled only in address ranges 0 or 1.
Any event qualification based on address ranges 2 and 3 are not
defined.
NOTE:
The mask bits programmed in IBRs 1,3,5,7 for bits [15:0] have no
effect in this mode.
When using fine mode address range 0, it is necessary to program
PMC38.ig_ibrp0,ig_ibrp2 to 0. Similarly, when using address range 1, it
is necessary to set PMC38.ig_ibrp1,ig_ibrp3 to 0.

Table 3-10. Instruction Address Range Configuration Register Fields (PMC38) (Sheet 2 of 2)

Field Bits Description
52 Reference Manual for Software Development and Optimization

Performance Monitoring
3.3.5.3 Use of IBRP0 For Instruction Address Range Check - Exception 2

The Address Range Constraint for IA64_TAGGED_INST_RETIRED event uses all four IBR
pairs. Calculation of IBRP2 match is the same as that of IBRP0 match with the exception that
IBR4,5 (in non-fine mode) are used instead of IBR0. Calculation of IBRP3 match is the same as that
of IBRP1 match with the exception that we use IBR6,7 (in non-fine mode) instead of IBR2,3.

The instruction range check tag is computed early in the processor pipeline and therefore includes
speculative, wrong-path as well as predicated off instructions. Furthermore, range check tags are
not accurate in the instruction fetch and out-of-order parts of the pipeline (cache and bus units).
Therefore, software must accept a level of range check inaccuracy for events generated by these
units, especially for non-looping code sequences that are shorter than the Montecito processor
pipeline. As described in Section 3.2.3.1, the instruction range check result may be combined with
the results of the IA-64 opcode match registers described in Section 3.3.5.4.

3.3.5.4 Fine Mode Address Range Check

In addition to providing coarse address range checking described above, Montecito processor can
be programmed to perform address range checks in the fine mode. Montecito provides the use of
two address ranges for fine mode. The first range is defined using IBRP0 and IBRP2 while the
second is defined using IBRP1 and IBRP3. When properly programmed to use address range 0, all
performance monitoring events that has been indicated to be able to qualify with IBRP0 would
now qualify with this new address range (defined collectively by IBRP0 and IBRP2). Similarly,
when using the address range 1, all events that could be qualified with IBRP1, now get qualified
with this new address range.

A user can configure the Montecito PMU to use fine mode address range 0 by following these
steps: (It is assumed that PMCs 32,33,34,35,36,38,41 all start with default settings):

• Program IBRP0 and IBRP2 to define the instruction address range. Note to follow the
programming restrictions mentioned in Table 3-10

• Program PMC32[ig_ad,inv] = ‘00 to turn off default tags injected into tag channel 0

• Program PMC38[ig_ibrp0,ig_ibrp2] = ‘00 to turn on address tagging based on IBRP0 and
IBRP2.

• Program PMC38.fine = 1

Similarly, a user can configure Montecito PMU to use fine mode address range by following the
same steps as above but this time with IBRP1&3. The only exception is that PMC32[ig_ad,inv]
need not to be programmed.

3.3.6 Opcode Match Check (PMC32,33,34,35,36)
As shown in Figure 3-5, in the Montecito processor, event monitoring can be constrained based on
the Itanium processor encoding (opcode) of an instruction. Registers PMC32,33,34,35,36 allow
configuring this feature.In Montecito, registers PMC32,33 and PMC34,35 define 2 opcode matchers
(Opcode matcher 0 (OpCM0) and Opcode Matcher 1 (OpCM1)). Register PMC36 controls how to
apply opcode range checking to the four instruction address ranges defined by using IBRPs.

3.3.6.1 PMC32,33,34,35

Figure 3-15, Figure 3-16 and Table 3-11, Table 3-12 describe the fields of PMC32,33,34,35 registers.
Figure 3-17 and Table 3-14 describes the register PMC36.
Reference Manual for Software Development and Optimization 53

Performance Monitoring
All combinations of bits [51:48] in PMC32,34 are supported. To match a A-slot instruction, it is
necessary to set bits [51:50] to 11. To match all instruction types, bits [51:48] should be set to 1111.
To ensure that all events are counted independent of the opcode matcher, all mifb and all mask bits
of PMC32,34 should be set to one (all opcodes match) while keeping the inv bit cleared.

Once the opcode matcher constraints are generated, they are ANDed with the address range
constraints available on 4 IBRP channels to form 4 combined address range and opcode match
ranges as described here. The constraints defined by OpCM0 are ANDed with address constraints
defined by IBRP0 and IBRP2 to form combined constraints for channels 0 and 2. Similarly, the
constraints defined by OpCM1 are ANDed with address constraints defined by IBRP1 and IBRP3
to form combined constraints for channels 1 and 3.

Figure 3-15. Opcode Match Registers (PMC32,34)
63 58 57 56 55 52 51 50 49 48 47 41 40 2 1 0

ig ig_adinv ig m i f b ig mask
6 1 1 4 1 1 1 1 7 41

Table 3-11. Opcode Match Registers(PMC32,34)

Field Bits Width HW
Reset Description

mask 40:0 41 all 1 Bits that mask Itanium® instruction encoding bits. Any of the 41
syllable bits can be selectively masked
If mask bit is set to 1, the corresponding opcode bit is not used
for opcode matching

ig 47:41 7 n/a Reads zero; Writes ignored

b 48 1 1 If 1: match if opcode is an B-slot

f 49 1 1 If 1: match if opcode is an F-slot

i 50 1 1 If 1: match if opcode is an I-slot

m 51 1 1 If 1: match if opcode is an M-slot

ig 55:52 4 n/a Reads zero; writes ignored

inv 56 1 1 Invert Range Check. for tag channel 0
If set to 1, the address ranged specified by IBRP0 is inverted.
Effective only when ig_ad bit is set to 0.
NOTE: This bit is ignored in PMC34

ig_ad 57 1 1 Ignore Instruction Address Range Checking for tag channle0
If set to 1, all instruction addresses are considered for events.
If 0, IBRs 0-1 will be used for address constraints.
NOTE: This bit is ignored in PMC34

ig 63:58 4 n/a Reads zero; Writes ignored

Figure 3-16. Opcode Match Registers (PMC33,35)
63 62 61 60 59 58 57 56 55 52 51 50 49 48 47 41 40 2 1 0

ig match
23 41
54 Reference Manual for Software Development and Optimization

Performance Monitoring
3.3.6.2 PMC36

Performance Monitoring Configuration register PMC36 controls whether or not to apply opcode
matching in event qualification. As mentioned earlier, opcode matching is applied to the same four
instruction address ranges defined by using IBRPs.

For opcode matching purposes, an Itanium instruction is defined by two items: the instruction type
“itype” (one of M, I, F or B) and the 41-bit encoding “enco{40:0}” defined the Intel® Itanium®

Architecture Software Developer’s Manual. Each instruction is evaluated against each opcode
match register (OpCM0 and OpCM1) as follows:

Match(OpCM[i]) = (imatch(itype, OpCM[i].mifb) AND
ematch(enco,OpCM[i].match,OpCM[i].mask))

Where:
imatch(itype,OpCMi.mifb) = (itype=M AND PMC[32+i].m) OR (itype=I AND PMC[32+i].i)
OR (itype=F AND PMC[32+i].f) OR (itype=B AND PMC[32+i].b)

ematch(enco,match,mask) = AND b=40..0 ((enco{b}=match{b}) OR mask{b})

Table 3-12. Opcode Match Registers(PMC33,35)

Field Bits Width HW
Reset Description

match 40:0 41 all 1s Opcode bits against which Itanium® instruction encoding to be
matched. Each opcode bit has a corresponding bit position here.

ig 63:41 23 n/a Ignored bits

Figure 3-17. Opcode Match Configuration Register (PMC36)
63 32 31 4 3 2 1 0

ig rsv Ch3
ig
OPC

Ch2_
ig_O
PC

Ch1_
ig_O
PC

Ch0_
ig_O
PC

1 1 1 1

Table 3-13. Opcode Match Configuration Register Fields (PMC36)

Field Bits HW
Reset Description

Ch0_ig_OPC 0 0 1: Tag channel0 PMU events will not be constrained by opcode
0: Tag channel0 PMU events (including
IA64_TAGGED_INST_RETIRED.00) will be opcode constrained by
OpCM0

Ch1_ig_OPC 1 0 1: tag channle1 events (IA64_TAGGED_INST_RETIRED.01) won’t be
constrained by opcode
0: tag channel1 events will be opcode constrained by OpCM1

Ch2_ig_OpC 2 0 1: Tag channel2 events (IA64_TAGGED_INST_RETIRED.10) won’t be
constrained by opcode
0: Tag channel2 events will be opcode constrained by OpCM0

Ch3_ig_OpC 3 0 1: Tag channel3 events (IA64_TAGGED_INST_RETIRED.11) won’t be
constrained by opcode
0: Tag channel2 events will be opcode constrained by OpCM1

rsv 31:4 0xfffffff Reserved. Users should not change this field from reset value
ig 63:32 n/a Ignored bits
Reference Manual for Software Development and Optimization 55

Performance Monitoring
The IBRP matches are advanced with the instruction pointer to the point where opcodes are being
dispersed. The matches from opcode matchers are ANDed with the IBRP matches at this point.

This produces two opcode match events that are combined with the instruction range check tag
(IBRRangeTag, see Section 3.3.5) as follows:
Tag(IBRChnl0) = Match(OpCM0) and IBRRangeTag0

Tag(IBRChnl1) = Match(OpCM1) and IBRRangeTag1

Tag(IBRChnl2) = Match(OpCM0) and IBRRangeTag2

Tag(IBRChnl3) = Match(OpCM1) and IBRRangeTag3

As shown in Figure 3-5 the 4 tags, Tag(IBRChnli; i=0-3) are staged down the processor pipeline
until instruction retirement and can be selected as a retired instruction count event (see event
description “IA64_TAGGED_INST_RETIRED”). In this way, a performance counter (PMC/
PMD4-15) can be used to count the number of retired instructions within the programmed range that
match the specified opcodes.

Note: Register PMC36 must contain the predetermined value of 0xfffffff0. If software modifies any bits
not listed in Table 3-13 processor behavior is not defined. This is the reset value for PMC36.

3.3.7 Data Address Range Matching (PMC41)
For instructions that reference memory, the Montecito processor allows event counting to be
constrained by data address ranges. The 4 architectural Data Breakpoint Registers (DBRs) can be
used to specify the desired address range. Data address range checking capability is controlled by
the Memory Pipeline Event Constraints Register (PMC41).

Figure 3-18 and Table 3-14 describe the fields of register PMC41. When enabled ([1,x0] in the bits
corresponding to one of the 4 DBRs to be used), data address range checking is applied to loads,
stores, semaphore operations, and the lfetch instruction.

Table 3-14. Memory Pipeline Event Constraints Fields (PMC41) (Sheet 1 of 2)

Field Bits Description

cfgdtag0 4:3 These bits determine whether and how DBRP0 should be used for
constraining memory pipeline events (where applicable)
00: IBR/Opc/DBR - Use IBRP0/OpCM0 and DBRP0 for constraints (i.e.
they will be counted only if their Instruction Address, opcodes and
Data Address matches the IBRP0 programmed into these registers)
01: IBR/Opc - Use IBRP0/OpCM0 for constraints
10: DBR - Only use DBRP0 for constraints
11: No constraints
NOTE: When used in conjunction with “fine” mode (see PMC14
description), only the lower bound DBR Pair (DBRP0 or DBRP1)
config needs to be set. The upper bound DBR Pair config should be
left to no constraint. So if IBRP0,2 are chosen for “fine” mode,
cfgdtag0 needs to be set according to the desired constraints but
cfgdtag2 should be left as 11 (No constraints).

cfgdtag1 12:11 These bits determine whether and how DBRP1 should be used for
constraining memory pipeline events (where applicable); bit for bit
these match those defined for DBRP0

cfgdtag2 20:19 These bits determine whether and how DBRP2 should be used for
constraining memory pipeline events (where applicable); bit for bit
these match those defined for DBRP0
56 Reference Manual for Software Development and Optimization

Performance Monitoring
DBRPx match is generated in the following fashion. Arbitrary range checking is not possible since
the mask bits are in powers of 2. Although it is possible to enable more than one DBRP at a time
for checking, it is not recommended. The resulting four matches are combined as follows to form a
single DBR match:

DBRRangeMatch = (DBRRangeMatch0 or DBRRangeMatch1 or DBRRangeMatch2 or
DBRRangeMatch3)

Events which occur after a memory instruction gets to the EXE stage will fire only if this qualified
match (DBRPx match) is true. The data address is compared to DBRPx; the address match is
further qualified by a number of user configurable bits in PMC41 before being distributed to
different places. DBR matching for performance monitoring ignores the setting of the DBR r,w,
and plm fields.

In order to allow simultaneous use of some DBRs for Performance Monitoring and the others for
debugging (the architected purpose of these registers), separate mechanisms are provided for
enabling DBRs. DBR bits x and the r/w-bit should be cleared to 0 for the DBRP which is going to
be used for the PMU. PSR.db has no effect when DBRs are used for this purpose.

Note: Register PMC41 must contain the predetermined value 0x2078fefefefe. If software modifies any
bits not listed in Table 3-14 processor behavior is not defined. It is illegal to have
PMC41[48:45]=0000 and PMC32[57]=0 and ((PMC38[2:1]=10 or 00) or (PMC38[5:4]=10 or 00));
this produces inconsistencies in tagging I-side events in L1D and L3.

3.3.8 Instruction EAR (PMC37/PMD32,33,36)
This section defines the register layout for the Montecito processor instruction event address
registers (IEAR). The IEAR, configured through PMC37, can be programmed in one of two modes:
instruction cache and instruction TLB miss collection. EAR specific unit masks allow software to

cfgdtag3 48,28:27 These bits determine whether and how DBRP3 should be used for
constraining memory pipeline events (where applicable); bit for bit
these match those defined for DBRP0

en_dbrp0 45 0 - No constraints
1 - Constraints as set by cfgdtag0

en_dbrp0 46 0 - No constraints
1 - Constraints as set by cfgdtag1

en_dbrp0 47 0 - No constraints
1 - Constraints as set by cfgdtag2

en_dbrp0 48 0 - No constraints
1 - Constraints as set by cfgdtag3

Table 3-14. Memory Pipeline Event Constraints Fields (PMC41) (Sheet 2 of 2)

Field Bits Description

Figure 3-18. Memory Pipeline Event Constraints Configuration Register (PMC41)
63 49 48 47 46 45 44 29 28 27 26 21 20 19 18 13 12 11 10 5 4 3 2 0

reser
ved

en_dbrp
3 2 1 0

reserved cfg
dtag3

reser
ved

cfg
dtag2

reser
ved

cfg
dtag

1

reser
ved

cfg
dtag0

reser
ved

15 1 1 1 1 16 2 6 2 6 2 6 2 3
Reference Manual for Software Development and Optimization 57

Performance Monitoring
specify event collection parameters to hardware. Figure 3-19 and Table 3-15 detail the register
layout of PMC37. The instruction address, latency and other captured event parameters are
provided in three PMD registers (PMD32,33,36). Table 3-20 describes the associated event address
data registers PMD34,35.

Both the instruction and data cache EARs (see Section 3.3.9) report the latency of captured cache
events and allow latency thresholding to qualify event capture. Event address data registers
(PMD32-36) contain valid data only when event collection is frozen (PMC0.fr is one). Reads of
PMD32-36 while event collection is enabled return undefined values.

Figure 3-20. Instruction Event Address Register Format (PMD34,35)

When the cache_tlb field (PMC37.ct) is set to 1x, instruction cache misses are monitored. When it
is set to 00, instruction TLB misses are monitored. The interpretation of the umask field and
performance monitor data registers PMD34,35 depends on the setting of this bit and is described in
Section 3.3.8.1 for instruction cache monitoring and in Section 3.3.8.2 for instruction TLB
monitoring.

Figure 3-19. Instruction Event Address Configuration Register (PMC37)
63 16 15 14 13 12 11 5 4 3 0

ig rsv ct umask pm plm
2 2 7 1 4

Table 3-15. Instruction Event Address Configuration Register Fields (PMC37)

Field Bits HW
Reset Description

plm 3:0 0 See Table 3-5, “Performance Monitor PMC Register Control Fields (PMC4-15)”

pm 4 0 See Table 3-5, “Performance Monitor PMC Register Control Fields (PMC4-15)”

umask 11:5
12:5

0 Selects the event to be monitored
If [13] = ‘1 then [12:5] are used for umask

ct 13:12 0 cache_tlb bit. Instruction EAR selector. Select instruction cache or TLB stalls

if =1x: Monitor demand instruction cache misses
NOTE: ISB hits are not considered misses.
PMD34,35 register interpretation (see Table 3-17)

if =01: Nothing monitored

if =00: Monitor L1 instruction TLB misses
PMD34,35 register interpretation (see Table 3-17)

rsv 15:14 0 Reserved bits

ignored 63:16 - Reads are 0; Writes are ignored

63 5 4 2 1 0

Instruction Cache Line Address (PMD34) ig. stat
59 3 2

63 13 12 11 0

ig (PMD35) ov latency
51 1 12
58 Reference Manual for Software Development and Optimization

Performance Monitoring
3.3.8.1 Instruction EAR Cache Mode (PMC37.ct=’1x)

When PMC37.ct is 1x, the instruction event address register captures instruction addresses and
access latencies for L1 instruction cache misses. Only misses whose latency exceeds a
programmable threshold are captured. The threshold is specified as an eight bit umask field in the
configuration register PMC37. Possible threshold values are defined in Table 3-16.

As defined in Table 3-17, the address of the instruction cache line missed the L1 instruction cache
is provided in PMD34. If no qualified event was captured, it is indicated in PMD34.stat. The latency
of the captured instruction cache miss in CPU clock cycles is provided in the latency field of
PMD35.

3.3.8.2 Instruction EAR TLB Mode (PMC37.ct=00)

When PMC37.ct is ‘00, the instruction event address register captures addresses of instruction TLB
misses. The unit mask allows event address collection to capture specific subsets of instruction
TLB misses. Table 3-18 summarizes the instruction TLB umask settings. All combinations of the
mask bits are supported.

Table 3-16. Instruction EAR (PMC37) umask Field in Cache Mode (PMC37.ct=’1x)
umask

Bits 12:5
Latency Threshold

[CPU cycles]
umask

Bits 12:5
Latency Threshold

[CPU cycles]

01xxxxxx >0 (All L1 Misses) 11100000 >=256

11111111 >=4 11000000 >=1024

11111110 >=8 10000000 >=4096

11111100 >=16 other undefined

11111000 >=32 00000000 RAB hit
(All L1 misses which hit in RAB)

11110000 >=128

Table 3-17. Instruction EAR (PMD34,35) in Cache Mode (PMC37.ct=’1x)

Register Field Bits Description

PMD34 stat 1:0 Status
x0: EAR did not capture qualified event
x1: EAR contains valid event data

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused cache miss

PMD35 latency 11:0 Latency in CPU clocks
overflow 12 If 1, latency counter has overflowed one or more times

before data was returned

Table 3-18. Instruction EAR (PMC37) umask Field in TLB Mode (PMC37.ct=00) (Sheet 1 of 2)

ITLB Miss Type PMC.umask[7:5] Description

--- 000 Disabled; nothing will be counted

L2TLB xx1 L1 ITLB misses which hit L2 TLB

VHPT x1x L1 Instruction TLB misses that hit VHPT
Reference Manual for Software Development and Optimization 59

Performance Monitoring
As defined in Table 3-19 the address of the instruction cache line fetch that missed the L1 ITLB is
provided in PMD34. The stat bit [1] indicates whether the captured TLB miss hit in the VHPT or
required servicing by software. PMD34.stat will indicate whether a qualified event was captured. In
TLB mode, the latency field of PMD35 is undefined.

3.3.9 Data EAR (PMC40, PMD32,33,36)
The data event address configuration register (PMC40) can be programmed to monitor either L1
data cache load misses, FP loads, L1 data TLB misses, or ALAT misses. Figure 3-21 and
Table 3-20 detail the register layout of PMC40. Figure 3-22 describes the associated event address
data registers PMD32,33,36. The mode bits in configuration register PMC40 select data cache, data
TLB, or ALAT monitoring. The interpretation of the umask field and registers PMD32,33,36
depends on the setting of the mode bits and is described in Section 3.3.9.1 for data cache load miss
monitoring, Section 3.3.9.2 for data TLB monitoring, and Section 3.3.9.3 for ALAT monitoring.

Both the instruction (see Section 3.3.8) and data cache EARsreport the latency of captured cache
events and allow latency thresholding to qualify event capture. Event address data registers
(PMD32-36) contain valid data only when event collection is frozen (PMC0.fr is one). Reads of
PMD32-36 while event collection is enabled return undefined values.

FAULT 1xx Instruction TLB miss produced by an ITLB Miss Fault

ALL 111 Select all L1 ITLB Misses
NOTE: All combinations are supported.

Table 3-18. Instruction EAR (PMC37) umask Field in TLB Mode (PMC37.ct=00) (Sheet 2 of 2)

ITLB Miss Type PMC.umask[7:5] Description

Table 3-19. Instruction EAR (PMD34,35) in TLB Mode (PMC37.ct=‘00)

Register Field Bits Description

PMD34 stat 1:0 Status Bits
00: EAR did not capture qualified event
01: L1 ITLB miss hit in L2 ITLB
10: L1 ITLB miss hit in VHPT
11: L1 ITLB miss produced an ITLB Miss Fault

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused TLB miss

PMD35 latency 11:2 Undefined in TLB mode

Figure 3-21. Data Event Address Configuration Register (PMC40)
63 26 25 24 23 20 19 16 15 9 8 7 6 5 4 3 0

ig. ism ig umask ig mode pm ig. plm
38 2 4 4 7 2 1 2 4

Table 3-20. Data Event Address Configuration Register Fields (PMC40) (Sheet 1 of 2)

Field Bits HW
Reset Description

plm 3:0 0 See Table 3-5 “Performance Monitor PMC Register Control Fields (PMC4-15).”

ig 5:4 - Reads 0; Writes are ignored
60 Reference Manual for Software Development and Optimization

Performance Monitoring
3.3.9.1 Data Cache Load Miss Monitoring (PMC40.mode=00)

If the Data EAR is configured to monitor data cache load misses, the umask is used as a load
latency threshold defined by Table 3-21.

As defined in Table 3-22, the instruction and data addresses as well as the load latency of a
captured data cache load miss are presented to software in three registers PMD2,3,17. If no qualified
event was captured, the valid bit in PMD3 is zero.

HPW accesses will not be monitored. setf and reads from ccv will not be monitored. If an L1D
cache miss is not at least 7 clocks after a captured miss, it will not be captured. Semaphore
instructions and floating point loads will be counted.

pm 6 0 See Table 3-5 “Performance Monitor PMC Register Control Fields (PMC4-15).”

mode 8:7 0 Data EAR mode selector:
‘00: L1 data cache load misses and FP loads
‘01: L1 data TLB misses
‘1x: ALAT misses

ig 15:9 - Reads 0; Writes are ignored

umask 19:16 Data EAR unit mask
mode 00: data cache unit mask (definition see Table 3-21, “Data EAR (PMC40)
Umask Fields in Data Cache Mode (PMC40.mode=00)”)
mode 01: data TLB unit mask (definition see Table 3-23, “Data EAR (PMC40)
Umask Field in TLB Mode (PMC40.ct=01)”)

ig 23:20 - Reads 0; Writes are ignored

ism 25:24 See Table 3-5 “Performance Monitor PMC Register Control Fields (PMC4-15).”

ig 63:26 - Reads 0; Writes are ignored

Table 3-20. Data Event Address Configuration Register Fields (PMC40) (Sheet 2 of 2)

Field Bits HW
Reset Description

Figure 3-22. Data Event Address Register Format (PMD32,d3,36)
63 4 3 2 1 0

Instruction Address (PMD36) vl bn slot
60 1 1 2

63 62 61 15 14 13 12 0

ig (PMD33) stat ov latency
2 50 12

63 0

Data Address (PMD32)
64
Reference Manual for Software Development and Optimization 61

Performance Monitoring
The detection of data cache load misses requires a load instruction to be tracked during multiple
clock cycles from instruction issue to cache miss occurrence. Since multiple loads may be
outstanding at any point in time and the Montecito processor data cache miss event address register
can only track a single load at a time, not all data cache load misses may be captured. When the
processor hardware captures the address of a load (called the monitored load), it ignores all other
overlapped concurrent loads until it is determined whether the monitored load turns out to be an L1
data cache miss or not. If the monitored load turns out to be a cache miss, its parameters are latched
into PMD32,33,36. The processor randomizes the choice of which load instructions are tracked to
prevent the same data cache load miss from always being captured (in a regular sequence of
overlapped data cache load misses). While this mechanism will not always capture all data cache
load misses in a particular sequence of overlapped loads, its accuracy is sufficient to be used by
statistical sampling or code instrumentation.

Table 3-21. Data EAR (PMC40) Umask Fields in Data Cache Mode (PMC40.mode=00)

umask

Bits 19:16

Latency
Threshold

[CPU cycles]

umask

Bits 19:16

Latency
Threshold

[CPU cycles]

0000 >= 4 (Any latency) 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.

Table 3-22. PMD32,33,36 Fields in Data Cache Load Miss Mode (PMC40.mode=00)

Register Fields Bit Range Description

PMD32 Data Address 63:0 64-bit virtual address of data item that caused miss
PMD33 latency 12:0 Latency in CPU clocks

overflow 13 Overflow - If 1, latency counter has overflowed one or
more times before data was returned

stat 15:14 Status bits;
00: No valid information in PMD32,36 and rest of PMD33
01: Valid information in PMD32,33 and may be in PMD36
NOTE: These bits should be cleared before the EAR is
reused.

ig 63:26 Reads 0; Writes are ignored
PMD36 slot 1:0 Slot bits; If “.vl” is 1, the Instruction bundle slot of memory

instruction
bn 2 Bundle bit; If “.vl” is 1 this indicates which of the executed

bundles is associated with the captured miss
vl 3 Valid bit;

0: Invalid Address (EAR did not capture qualified event)
1: EAR contains valid event data
NOTE: This bit should be cleared before the EAR is
reused

Instruction Address 63:4 Virtual address of the first bundle in the 2-bundle dispersal
window which was being executed at the time of the miss.
If “.bn” is 1 then the second bundle contains memory
instruction and 16 should be added to the address.
62 Reference Manual for Software Development and Optimization

Performance Monitoring
3.3.9.2 Data TLB Miss Monitoring (PMC40.mode=‘01)

If the Data EAR is configured to monitor data TLB misses, the umask defined in Table 3-24
determines which data TLB misses are captured by the Data EAR. For TLB monitoring, all
combinations of the mask bits are supported.

As defined in Table 3-24 the instruction and data addresses of captured DTLB misses are presented
to software in PMD32,36. If no qualified event was captured, the valid bit in PMD36 reads zero.
When programmed for data TLB monitoring, the contents of the latency field of PMD33 are
undefined.

Both load and store TLB misses will be captured. Some unreached instructions will also be
captured. For example, if a load misses in L1DTLB but hits in L2 DTLB and is in an instruction
group after a taken branch, it will be captured. Stores and floating-point operations never miss in
L1DTLB but could miss the L2 DTLB or fault to be handled by software.

Note: PMC39 must be 0 in this mode; else the wrong IP for misses coming right after a mispredicted
branch.

Table 3-23. Data EAR (PMC40) Umask Field in TLB Mode (PMC40.ct=01)

L1 DTLB Miss
Type PMC.umask[19:16] Description

--- 000x Disabled; nothing will be counted

L2DTLB xx1x L1 DTLB misses which hit L2 DTLB

VHPT x1xx L1 DTLB misses that hit VHPT

FAULT 1xxx Data TLB miss produced a fault

ALL 111x Select all L1 DTLB Misses
NOTE: All combinations are supported.

Table 3-24. PMD32,33,36 Fields in TLB Miss Mode (PMC40.mode=‘01) (Sheet 1 of 2)

Register Field Bit Range Description

PMD32 Data Address 63:0 64-bit virtual address of data item that caused miss
PMD33 latency 12:0 Undefined in TLB Miss mode

ov 13 Undefined in TLB Miss mode
stat 15:14 Status

00: invalid information in PMD32,36 and rest of PMD33
01: L2 Data TLB hit
10: VHPT hit
11: Data TLB miss produced a fault
NOTE: These bits should be cleared before the EAR is
reused.

ig 63:26 Reads 0; Writes are ignored
PMD36 slot 1:0 Slot bits; If “.vl” is 1, the Instruction bundle slot of memory

instruction.
bn 2 Bundle bit; If “.vl” is 1 this indicates which of the executed

bundles is associated with the captured miss
Reference Manual for Software Development and Optimization 63

Performance Monitoring
3.3.9.3 ALAT Miss Monitoring (PMC40.mode=‘1x)

As defined in Table 3-25, the address of the instruction (failing chk.a and ld.c) causing an
ALAT miss is presented to software in PMD36. If no qualified event was captured, the valid bit in
PMD36 reads zero. When programmed for ALAT monitoring, the latency field of PMD33 and the
contents of PMD32 are undefined.

Note: PMC39 must be 0 in this mode; else the wrong IP for misses coming right after a mispredicted
branch.

vl 3 Valid bit;
0: Invalid Instruction Address
1: EAR contains valid instruction address of the miss
NOTE: It is possible for this bit to contain 0 while
PMD33.stat indicate valid D-EAR data. This can happen
when D-EAR is triggered by an RSE load for which no
instruction address is captured.
NOTE: This bit should be cleared before the EAR is
reused.

Instruction Address 63:4 Virtual address of the first bundle in the 2-bundle dispersal
window which was being executed at the time of the miss.
If “.bn” is 1 then the second bundle contains memory
instruction and 16 should be added to the address.

Table 3-24. PMD32,33,36 Fields in TLB Miss Mode (PMC40.mode=‘01) (Sheet 2 of 2)

Register Field Bit Range Description

Table 3-25. PMD32,33,36 Fields in ALAT Miss Mode (PMC11.mode=‘1x)

Register Field Bit Range Description

PMD32 Data Address 63:0 Undefined in ALAT Miss Mode
PMD33 latency 12:0 Undefined in ALAT Miss mode

ov 13 Undefined in ALAT Miss mode
stat 15:14 Status bits;

00: No valid information in PMD32,36 and rest of PMD33
01: Valid information in PMD32,33 and may be in PMD36
NOTE: These bits should be cleared before the EAR is
reused.

ig 63:26 Reads 0; Writes are ignored
PMD36 slot 1:0 Slot bits; If “.vl” is 1, the Instruction bundle slot of memory

instruction
bn 2 Bundle bit; If “.vl” is 1 this indicates which of the executed

bundles is associated with the captured miss
vl 3 Valid bit;

0: Invalid Address (EAR did not capture qualified event)
1: EAR contains valid event data
NOTE: This bit should be cleared before the EAR is
reused.

Instruction Address 63:4 Virtual address of the first bundle in the 2-bundle dispersal
window which was being executed at the time of the miss.
If “.bn” is 1 then the second bundle contains memory
instruction and 16 should be added to the address.
64 Reference Manual for Software Development and Optimization

Performance Monitoring
3.3.10 Execution Trace Buffer (PMC39,42,PMD48-63,38,39)
The execution trace buffer provides information about the most recent Itanium processor control
flow changes. The Montecito execution trace buffer configuration register (PMC39) defines the
conditions under which instructions which cause the changes to the execution flow are captured,
and allows the trace buffer to capture specific subsets of these events.

In addition to the branches captured in the previous generations of Itanium 2 processor BTB,
Montecito’s ETB captures rfi instructions, exceptions (excluding asynchronous interrupts) and
silently resteered chk (failed chk) events. Passing chk instructions are not captured under any
programming conditions (except when there is another capturable event).

In every cycle in which a qualified change to the execution flow happens, its source bundle address
and slot number are written to the execution trace buffer. This event’s target address is written to
the next buffer location. If the target instruction bundle itself contains a qualified execution flow
change, the execution trace buffer either records a single trace buffer entry (with the s-bit set) or
makes two trace buffer entries: one that records the target instruction as a branch target s-bit
cleared), and another that records the target instruction as a branch source (s-bit set). As a result,
the branch trace buffer may contain a mixed sequence of the source and target addresses.

Note: The setting of PMC42 can override the setting of PMC39. PMC42 is used to configure the Execution
Trace Buffer’s alternate mode: the IP-EAR. Please refer to Section 3.3.10.2.1, “Notes on the IP-
EAR” for more information about this mode. PMC42.mode must be set to 000 to enable normal
branch trace capture in PMD48-63 as described below. If PMC42.mode is set to other than 000,
PMC39’s contents will be ignored.

3.3.10.1 Execution Trace Capture (PMC42.mode=‘000)

Section 3.3.10.1.1 through Section 3.3.10.1.3 describe the operation of the Execution Trace Buffer
when configured to capture an execution trace (or “enhanced” branch trace).

3.3.10.1.1 Execution Trace Buffer Collection Conditions

The execution trace buffer configuration register (PMC39) defines the conditions under which
execution flow changes are to be captured. These conditions are given in Figure 3-23 and
Table 3-26, which refer to conditions associated with the branch prediction. These conditions are:

• Whether the target of the branch should be captured

• The path of the branch (not taken/taken), and

• Whether or not the branch path was mispredicted

• Whether or not the target of the branch was mispredicted

• What type of branch should be captured

Note: All instructions eligible for capture are subject to filtering by the “plm” field but only branches are
affected by PMC39’s other filters (tm,ptm,ppm and brt) as well as the Instruction Addr Range and
Opcode Match filters.

Figure 3-23. Execution Trace Buffer Configuration Register (PMC39)
63 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ig brt ppm ptm tm ds pm ig. plm
48 2 2 2 2 1 1 2 4
Reference Manual for Software Development and Optimization 65

Performance Monitoring
To summarize, an Itanium instruction branch and its target are captured by the trace buffer if the
following equation is true:

(not PSR.is)
and ((tm[1] - branch taken)

or (tm[0] - branch not taken)
)

and ((ptm[1] - hardware predicted target address correctly)
or (ptm[0] - hardware mispredicted target address)

)
and ((ppm[1] - hardware predicted the branch path correctly)

or (ppm[0] - hardware mispredicted the branch path)
)

and (not (not ptm[1] and ptm[0] and not ppm[1] and ppm[0])
) - hardware mispredicted path AND target

and (not ds
)

Table 3-26. Execution Trace Buffer Configuration Register Fields (PMC39)

Field Bits Description

plm 3:0 See Table 3-5
Note: This mask is applied at the time the event’s source address is captured. Once the
source IP is captured, the target IP of this event is always captured even if the ETB is
disabled.

ig 5:4 Reads zero; writes are ignored

pm 6 See Table 3-5
Note: This bit is applied at the time the event’s source address is captured. Once the
source IP is captured, the target IP of this event is always captured even if the ETB is
disabled.

ds 7 Data selector:
1: reserved (undefined data is captured in lieu of the target address)
0: capture branch target

tm 9:8 Taken Mask:
11: all Itanium® instruction branches
10: Taken Itanium instruction branches only
01: Not Taken Itanium instruction branches only
00: No branch is captured

ptm 11:10 Predicted Target Address Mask:
11: capture branch regardless of target prediction outcome
10: branch target address predicted correctly
01: branch target address mispredicted
00: No branch is captured

ppm 13:12 Predicted Predicate Mask:
11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)
00: No branch is captured

brt 15:14 Branch Type Mask:
11: only non-return indirect branches captured
10: only return branches will be captured
01: only IP-relative branches will be captured
00: all branches are captured

ig 63:16 Reads zero; writes are ignored
66 Reference Manual for Software Development and Optimization

Performance Monitoring
To capture all correctly predicted Itanium instruction branches, the Montecito execution trace
buffer configuration settings in PMC39 should be: ds=0, tm=11, ptm=10, ppm=10,brt=00.

Either branches whose path was mispredicted can be captured (ds=0, tm=11, ptm=11,
ppm=01,brt=00) or branches with a target misprediction (ds=0, tm=11, ptm=01, ppm=11,brt=00)
can be captured but not both. A setting of ds=0, tm=11, ptm=01, ppm=01,brt=00 will result in an
empty buffer. If a branch’s path is mispredicted, no target prediction is recorded.

Instruction Address Range Matching (Section 3.3.5) and Opcode Matching (Section 3.3.5) may
also be used to constrain what is captured in the execution trace buffer.

3.3.10.1.2 Execution Trace Buffer Data Format (PMC42.mode=‘000)

The sixteen execution trace buffer registers PMD48-63 provide information about the outcome of a
captured event sequence. The branch trace buffer registers (PMD48-63) contain valid data only
when event collection is frozen (PMC0.fr is one). While event collection is enabled, reads of
PMD48-63 return undefined values. The registers follow the layout defined in Figure 3-24, and
Table 3-27 contain the address of either a captured branch instruction (s-bit=1) or a branch target
(s-bit=0). For branch instructions, the mp-bit indicates a branch misprediction. An execution trace
register with a zero s-bit and a zero mp-bit indicates an invalid buffer entry. The slot field captures
the slot number of the first taken Itanium instruction branch in the captured instruction bundle. A
slot number of 3 indicates a not-taken branch.

In every cycle in which a qualified Itanium instruction branch retires1, its source bundle address
and slot number are written to the branch trace buffer. If within the next clock, the target instruction
bundle contains a branch that retires and meets the same conditions, the address of the second

Figure 3-24. Execution Trace Buffer Register Format (PMD48-63, where PMC39.ds == 0)
63 4 3 2 1 0

Address slot mp s
60 2 1 1

Table 3-27. Execution Trace Buffer Register Fields (PMD48-63) (PMC42.mode=‘000)

Field Bit Range Description

s 0 Source Bit
1: contents of register is the source address of a monitored event (branch, rfi,
exception or failed chk)
0: contents of register is a target or undefined (if PMC39.ds = 1)

mp 1 Mispredict Bit
if s=1 and mp=1: mispredicted event (e.g. target, predicate or back end
misprediction)
if s=1 and mp=0: correctly predicted event
if s=0 and mp=1: valid target address
if s=0 and mp=0: invalid ETB register
rfi/exceptions/failed_chk are all considered as mispredicted events and are encoded
as above.

slot 3:2 if s=0: undefined
if s=1: Slot index of first taken event in bundle
00: Itanium processor Slot 0 source/target
01: Itanium processor Slot 1 source/target
10: Itanium processor Slot 2 source/target
11: this was a not taken event

Address 63:4 if s=1: 60-bit bundle address of Itanium instruction branch
if ds=0 and s=0: 60-bit target bundle address of Itanium instruction branch
Reference Manual for Software Development and Optimization 67

Performance Monitoring
branch is stored. Otherwise, either the branches’ target address (PMC39.ds=0) or details of the
branch prediction (PCM39.ds=1) are written to the next buffer location. As a result, the execution
trace buffer may contain a mixed sequence of the branches and targets.

The Montecito branch trace buffer is a circular buffer containing the last four to eight qualified
Itanium instruction branches. The Execution Trace Buffer Index Register (PMD38) defined in
Figure 3-25 and Table 3-28 identify the most recently recorded branch or target. In every cycle in
which a qualified branch or target is recorded, the execution buffer index (ebi) is post-incremented.
After 8 entries have been recorded, the branch index wraps around, and the next qualified branch
will overwrite the first trace buffer entry. The wrap condition itself is recorded in the full bit of
PMD16. The ebi field of PMD38 defines the next branch buffer index that is about to be written.The
following formula computes the last written branch trace buffer PMD index from the contents of
PMD38:

last-written-PMD-index = 48+ ([16*PMD38.full) + (PMC38.ebi - 1)] % 16)

If both the full bit and the ebi field of PMD38 are zero, no qualified branch has been captured by the
branch trace buffer. The full bit gets set the every time the branch trace buffer wraps from PMD63
to PMD48. Once set, the full bit remains set until explicitly cleared by software, i.e. it is a sticky bit.
Software can reset the ebi index and the full bit by writing to PMD38.

PMD39 provides additional information related to the ETB entries.

1. In some cases, the Montecito processor execution trace buffer will capture the source (but not the target) address of an excepting branch
instruction. This occurs on trapping branch instructions as well as faulting br.ia, break.b and multi-way branches.

Figure 3-25. Execution Trace Buffer Index Register Format (PMD38)
63 6 5 4 3 0

ig full ig ebi
58 1 1 4

Table 3-28. Execution Trace Buffer Index Register Fields (PMD38)

Field Bit Range Description

ebi 3:0 Execution Buffer Index [Range 0..15 - Index 0 indicates PMD48]
Pointer to the next execution trace buffer entry to be written
if full=1: points to the oldest recorded branch/target
if full=0: points to the next location to be written

ig 4 Reads zero; Writes are ignored
full 5 Full Bit (sticky)

if full=1: execution trace buffer has wrapped
if full=0: execution trace buffer has not wrapped

ig 63:6 Reads zero; Writes are ignored

Figure 3-26. Execution Trace Buffer Extension Register Format (PMD39) (PMC42.mode=‘1xx)
63 59 58 55 54 24 23 20 19 16 15 12 11 8 7 4 3 0

pmd63
ext

pmd55
ext

... pmd58
ext

pmd50
ext

pmd57
ext

pmd49
ext

pmd56
ext

pmd48
ext

4 4 4 4 4 4 4 4
68 Reference Manual for Software Development and Optimization

Performance Monitoring
3.3.10.1.3 Notes on the Execution Trace Buffer

Although the Montecito ETB does not capture asynchronous interrupts as events, the address of
these handlers can be captured as target addresses. This could happen if, at the target of a captured
event (e.g. taken branch), an asynchronous event is taken before executing any instruction at the
target.

3.3.10.2 IP Event Address Capture (PMC42.mode=‘1xx)

Montecito has a new feature called Instruction Pointer Address Capture (or IP-EAR). This feature
is intended to facilitate the correlation of performance monitoring events to IP values. To do this,
the Montecito’s Execution Trace Buffer (ETB) can be configured to capture IPs of retired
instructions. When a performance monitoring event is used to trigger an IP-EAR freeze, if the IP
which caused the event gets to retirement there is a good chance that IP would be captured in the
ETB. The IP-EAR freezes after a programmable number of cycles following a PMU freeze as
described below

Register PMC42 is used to configure this feature and the ETB registers(PMD48-63,39) are used to
capture the data. PMD38 holds the index and overflow bits for the IP Buffer much as it does for the
ETB.

Note: Setting PMC42.mode to a non-0 value will override the setting of PMC39 (the configuration
register for the normal BTB mode).

Table 3-29. Execution Trace Buffer Extension Register Fields (PMD39) (PMC42.mode=‘1xx)

Field Bit Range Bits Description

pmd48 ext 3:0 3:2 ignored
Reads zero; writes are ignored

1 bruflush
If PMD48.bits[1:0] = 11,
1 = back end mispredicted the branch and the pipeline was flushed by it
0 = no pipeline flushes are associated with this branch

0 b1
if PMD48.s = 1, then
1 = branch was from bundle 1, add 0x1 to PMD48.bits[63:4]
0 = branch was from bundle 0, no correction is necessary

else, ignore
pmd56 ext 7:4 Same as above for PMD56
pmd49 ext 11:8 Same as above for PMD49
pmd57 ext 15:12 Same as above for PMD57
pmd50 ext 19:16 Same as above for PMD50
pmd58 ext 23:20 Same as above for PMD58
so on so on so on
pmd63 ext 63:60 Same as above for PMD63

Figure 3-27. IP-EAR Configuration Register (PMC42)
63 19 18 11 10 8 7 6 5 4 3 2 1 0

ig delay mode ig pm ig plm
45 8 3 1 1 2 4
Reference Manual for Software Development and Optimization 69

Performance Monitoring
The IP_EAR functions by continuously capturing retired IPs in PMD48-63 as long as it is enabled.
It captures retired IPs and the elapsed time between retirements. Up to 16 entries can be captured.

The IP-EAR has a slightly different freezing model than the rest of the Performance Monitors. It is
capable of delaying its freeze for a number of cycles past the point of PMU freeze. The user can
program an 8-bit number to determine the number of cycles the freeze will be delayed.

Note: PMD48-63 are not, in fact, 68b registers. Figure 3-28 and Figure 3-29 represent the virtual layout of
an execution trace buffer entry in IP-EAR mode for the sake of clarity. The higher order bits [67-
64] for each entry are mapped into PMD39 as described in Table 3-33.

Table 3-30. IP-EAR Configuration Register Fields (PMC42)

Field Bits Description

plm 3:0 See Table 3-5, “Performance Monitor PMC Register Control Fields (PMC4-15)”

ig 5:4 Reads zero; Writes are ignored

pm 6 See Table 3-5, “Performance Monitor PMC Register Control Fields (PMC4-15)”

ig 7 Reads zero; Writes are ignored

mode 10:8 IP EAR mode:
000: ETB Mode (IP-EAR not functional; ETB is functional)
100: IP-EAR Mode (IP-EAR is functional; ETB not functional)

delay 18:11 Programmable delay before freezing

ig 63:20 Reads zero; Writes are ignored

Figure 3-28. IP-EAR data format (PMD48-63, where PMC42.mode == 100 and PMD48-63.ef =0)
67 66 65 60 59 0

ef f cycl IP[63:4]
1 1 6 60

Figure 3-29. IP-EAR data format (PMD48-63, where PMC42.mode == 100 and PMD48-63.ef =1)
67 66 65 60 59 8 7 0

ef f cycl IP[63:12] Delay
1 6 52 8

Table 3-31. IP-EAR Data Register Fields (PMD48-63) (Sheet 1 of 2)(PMC42.mode=‘1xx)

Field Bits Description

cycl 63:60 Elapsed cycles
4-bit least significant bits of a 6-bit elapsed cycle count from the previous retired IP.
This is a saturating counter and would stay at all 1s when counted up to the maximum
value.
Note: the 2 most significant bits for each entry are found in PMD39. See below.
70 Reference Manual for Software Development and Optimization

Performance Monitoring
IP 59:8 Retired IP value; bits[63:12]

delay 7:0 Delay count
If ef = 1
Indicates the remainder of the delay count
Else
Retired IP value: bits[11:4]

Table 3-31. IP-EAR Data Register Fields (PMD48-63) (Sheet 2 of 2)(PMC42.mode=‘1xx)

Field Bits Description

Figure 3-30. IP Trace Buffer Index Register Format (PMD38)(PMC42.mode=‘1xx)
63 6 5 4 3 0

ig full ig ebi
58 1 1 4

Table 3-32. IP Trace Buffer Index Register Fields (PMD38) (PMC42.mode=‘1xx)

Field Bit Range Description

ebi 3:0 IP Trace Buffer Index [Range 0..15 - Index 0 indicates PMD48]
Pointer to the next IP trace buffer entry to be written
if full=1: points to the oldest recorded IP entry
if full=0: points to the next location to be written

ig 4 Reads zero; Writes are ignored
full 5 Full Bit (sticky)

if full=1: IP trace buffer has wrapped
if full=0: IP trace buffer has not wrapped

ig 63:6 Reads zero; Writes are ignored

Figure 3-31. IP Trace Buffer Extension Register Format (PMD39) (PMC42.mode=‘1xx)
63 59 58 55 54 24 23 20 19 16 15 12 11 8 7 4 3 0

pmd63
ext

pmd55
ext

... pmd58
ext

pmd50
ext

pmd57
ext

pmd49
ext

pmd56
ext

pmd48
ext

4 4 4 4 4 4 4 4
Reference Manual for Software Development and Optimization 71

Performance Monitoring
\

3.3.10.2.1 Notes on the IP-EAR

When the IP-EAR freezes due to its normal freeze mechanism (i.e. PMU freeze + delay), it
captures one last entry with “ef”=0. The IP value in this entry could be incorrect since there is no
guarantee that the CPU would be retiring an IP at this particular time. Since this is always the
youngest entry captured in IP_EAR buffer, it should be easier to identify this event.

3.3.11 Interrupts
As mentioned in Table 3-6, each one of registers PMD4-15 will cause an interrupt if the following
conditions are all true:

• PMCi.oi=1 (i.e. overflow interrupt is enabled for PMDi) and PMDi overflows. Note that there
is only one interrupt line that will be raised regardless of which PMC/PMD set meets this
condition.

This interrupt is an “External Interrupt” with Vector= 0x3000 and will be recognized only if the
following conditions are true:

• PMV.m=0 and PMV.vector is set up correctly; i.e. Performance Monitor interrupts are not
masked and a proper vector is programmed for this interrupt by executing a “mov
cr73=r2”.

• PSR.i =1 and PSR.ic=1; i.e. interruptions are unmasked and interruption collection is enabled
in the Processor Status Register by executing either the “ssm imm” or “mov psr.l=r2”
instruction.

• TPR.mmi=0 (i.e. all external interrupts are not masked) and TPR.mic is a value that the
priority class that Performance Monitor Interrupt belongs to are not masked. For example if
we assign vector 0xD2 to the Performance Monitor Interrupt, according to Table 5-7 “Interrupt
Priorities, Enabling, and Masking” in Volume 2 of the Intel® Itanium® Architecture Software
Developer’s Manual, it will be priority class 13. So any value less than 13 for TPR.mic is okay
for recognizing this interrupt. A “mov cr66=r1” will write to this register.

Table 3-33. IP Trace Buffer Extension Register Fields (PMD39) (PMC42.mode=‘1xx)

Field Bit Range Bits Description

pmd48 ext 3:0 3:2 cycl - Elapsed cycles
2-bit most significant bits of a 6-bit elapsed cycle count from the previous
retired IP. This is a saturating counter and would stay at all 1s when
counted up to the maximum value.

1 f - Flush
Indicates whether there has been a pipe flush since the last entry

0 ef - Early freeze
if 1: The current entry is an early freeze case
Early freeze occurs if:

PSR bits causes IP-EAR to become disabled
Thread switch

pmd56 ext 7:4 Same as above for PMD56
pmd49 ext 11:8 Same as above for PMD49
pmd57 ext 15:12 Same as above for PMD57
pmd50 ext 19:16 Same as above for PMD50
pmd58 ext 23:20 Same as above for PMD58
so on so on so on
pmd63 ext 63:60 Same as above for PMD63
72 Reference Manual for Software Development and Optimization

Performance Monitoring
• There are no higher priority faults, traps, or external interrupts pending.

Interrupt Service routine needs to read IVR register “mov r1=cr65” in order to figure out the
highest priority external interrupt which needs to be serviced.

Before returning from interrupt service routine, the Performance Monitor needs to be initialized
such that the interrupt will be cleared. This could be done by clearing the PMC.oi and/or re-
initializing the PMD which caused the interrupt (you will know this by reading PMC0). In addition
to this, all bits of PMC0 need to be cleared if further monitoring needs to be done.

3.3.12 Processor Reset, PAL Calls, and Low Power State
Processor Reset: On processor hardware reset bits oi and ev of all PMC registers are zero, and
PMV.m is set to one. This ensures that no interrupts are generated, and events are not externally
visible. On reset, PAL firmware ensures that the instruction address range check, the opcode
matcher and the data address range check are initialized as follows:

• PMC32,33,34,35 = 0xffffffffffffffff, (match all opcodes)

• PMC41 = 0x2078fefefefe, (no memory pipeline event constraints)

• PMC38 = 0xdb6, (no instruction address range constraints)

• PMC36 = 0xfffffff0, (no opcode match constraints)

All other performance monitoring related state is undefined.

PAL Call: As defined in the Volume 2 of the Intel® Itanium® Architecture Software Developer’s
Manual, the PAL call PAL_PERF_MON_INFO provides software with information about the
implemented performance monitors. The Montecito processor specific values are summarized in
Table 3-34.

Low Power State: To ensure that monitor counts are preserved when the processor enters low
power state, PAL_LIGHT_HALT freezes event monitoring prior to powering down the processor.

Table 3-34. Information Returned by PAL_PERF_MON_INFO for the Montecito Processor

PAL_PERF_MON_INFO
Return Value Description

Montecito
Processor Specific

Value

PAL_RETIRED 8-bit unsigned event type for counting the number of
untagged retired Itanium instructions

0x08

PAL_CYCLES 8-bit unsigned event type for counting the number of
running CPU cycles

0x12

PAL_WIDTH 8-bit unsigned number of implemented counter bits 48
PAL_GENERIC_PM_PAIRS 8-bit unsigned number of generic PMC/PMD pairs 4
PAL_PMCmask 256-bit mask defining which PMC registers are

populated
0x3FFF

PAL_PMDmask 256-bit mask defining which PMD registers are
populated

0x3FFFF

PAL_CYCLES_MASK 256-bit mask defining which PMC/PMD counters can
count running CPU cycles (event defined by
PAL_CYCLES)

0xF0

PAL_RETIRED_MASK 256-bit mask defining which PMC/PMD counters can
count untagged retired Itanium instructions (event
defined by PAL_RETIRED)

0xF0
Reference Manual for Software Development and Optimization 73

Performance Monitoring
As a result, bus events occurring during lower power state (e.g. snoops) will not be counted.
PAL_LIGHT_HALT preserves the original value of the PMC0 register.

§

74 Reference Manual for Software Development and Optimization

4 Performance Monitor Events

4.1 Introduction
This chapter describes the architectural and microarchitectural events measurable on the Montecito
processor through the performance monitoring mechanisms described earlier in Chapter 3. The
early sections of this chapter provide a categorized high-level view of the event list, grouping
logically related events together. Computation (either directly by a counter in hardware or
indirectly as a “derived” event) of common performance metrics is also discussed. Each directly
measurable event is then described in greater detail in the alphabetized list of all processor events
in Chapter 4.

The Montecito processor is capable of monitoring numerous events. The majority of events can be
selected as input to any of the PMD4-15 by programming bit [15:8] of the corresponding PMC to
the hexadecimal values shown in the “event code” field of the event list. Please refer to
Section 4.8.2 and Section 4.8.4 for events that have more specific requirements.

4.2 Categorization of Events
Performance related events are grouped into the following categories:

• Basic Events: clock cycles, retired instructions (Section 4.3)

• Instruction Dispersal Events: instruction decode and issue (Section 4.4)

• Instruction Execution Events: instruction execution, data and control speculation, and memory
operations (Section 4.5)

• Stall Events: stall and execution cycle breakdowns (Section 4.6)

• Branch Events: branch prediction (Section 4.7)

• Memory Hierarchy: instruction and data caches (Section 4.8)

• System Events: operating system monitors (Section 4.9)

• TLB Events: instruction and data TLBs (Section 4.10)

• System Bus Events: (Section 4.11)

• RSE Events: Register Stack Engine (Section 4.12)

• Hyper-Threading Events (Section 4.13)

Each section listed above includes a table providing information on directly measurable events.
The section may also contain a second table of events that can be derived from those that are
directly measurable. These derived events may simply rename existing events or present steps to
determine the value of common performance metrics. Derived events are not, however, discussed
in the systematic event listing in Section 4.15.

Directly measurable events often use the PMC.umask field (See Chapter 3) to measure a certain
variant of the event in question. Symbolic event names for such events include a period to indicate
use of the umask, specified by four bits in the detailed event description (x’s are for don’t-cares).
Reference Manual for Software Development and Optimization 75

Performance Monitor Events
The summary tables in the subsequent sections define events by specifying the following
attributes:

• Symbol Name - Symbolic name used to denote this event.

• Event Code - Hexadecimal value to program into bits [15:8] of the appropriate PMC register in
order to measure this event.

• IAR - Can this event be constrained by the Instruction Address Range registers?

• DAR - Can this event be constrained by the Data Address Range registers?

• OPC - Can this event by constrained by the Opcode Match registers?

• Max Inc/Cyc - Maximum Increment Per Cycle or the maximum value this event may be
increased by each cycle.

• T - Type; Either A for Active, F for Floating, S for Self Floating or C for Causal (check table
Table 4-42 for this information).

• Description - Brief description of the event.

4.2.1 Hyper-Threading and Event Types
The Montecito Processor implements a type of hardware based multi-threading that effectively
allows two threads to coexist within a processor core although only one thread is “active” within
the core’s pipeline at any moment in time. This affects how events are generated. Certain events
may be generated after the thread they belong has become inactive. This also affects how events
are assigned to the threads occupying the same core, which is also dependent upon which PMD the
event was programmed into (see Section 3.3.2 for more information). Certain events do not have
the concept of a “home” thread.

These effects are further complicated by the use of the “.all” field, which allows a user to choose to
monitor a particular event for the thread being programmed to or for both threads (see Table 3-6). It
should be noted that monitoring with .all enabled does not always produce valid results and in
certain cases the setting of .all is ignored. Please refer to the individual events for further
information.

To help decipher these effects, events have been classified by the following types:

• Active - this event can only occur when the thread that generated it is “active” (currently
executing in the processor core’s pipeline) and is considered to be generated by the active
thread. Either type of monitor can be used if .all is not set. Example(s): BE_EXE_BUBBLE
and IA64_INST_RETIRED.

• Causal - this event does not belong to a thread. It is assigned to the active thread. Although it
seems natural to use either type of monitor if .all is not set, due to implementation constraints,
causal events should only be monitored in duplicated counters. There is one exception to this
rule: CPU_OP_CYCLES can be measured in both types of counters. Example(s):
CPU_OP_CYCLES and L2I_SNOOP_HITS.

• Floating - this event belongs to a thread, but could have been generated when its thread was
inactive (or “in the background”). These events should only be monitored in duplicated
counters. If .all is not set, only events associated with the monitoring thread will be captured.
If .all is set, events associated with both threads will be captured during the time the
monitoring thread has been assigned to a processor by the OS. Example(s):
L2D_REFERENCES and ER_MEM_READ_OUT_LO.
76 Reference Manual for Software Development and Optimization

Performance Monitor Events
• Self Floating - this is a hybrid event used to better categorize certain BUS and SI (System
Interface) events. If this event was monitored with the .SELF umask, it is a Floating event. If
any other umask is used it is considered Causal. These events should only be monitored in
duplicated counters. Example(s): BUS_IO and SI_WRITEQ_INSERTS.

4.3 Basic Events
Table 4-1 summarizes two basic execution monitors. The Montecito retired instruction count,
IA64_INST_RETIRED, includes both predicated true and predicated off instructions and nop
instructions, but excludes RSE operations.

4.4 Instruction Dispersal Events
Instruction cache lines are delivered to the execution core and dispersed to the Montecito processor
functional units. The Montecito processor can issue, or disperse, 6 instructions per clock cycle. In
other words, the Montecito processor can issue to 6 instruction slots (or syllables).The following
events are intended to give users an idea of how effectively instructions are dispersed and why they
are not dispersed at full capacity. There are five reasons for not dispersing at full capacity. One is
measured by DISP_STALLED. For every clock that dispersal is stalled, dispersal takes a hit of
6-syllables. The other four reasons are measured by SYLL_NOT_DISPERSED. Due to the way
the hardware is designed, SYLL_NOT_DISPERSED may contain an overcount due to implicit and
explicit bits; although this number should be small, SYLL_OVERCOUNT will provide an accurate
count for it.

The relationship between these events is as follows:

6*(CPU_OP_CYCLES-DISP_STALLED) = INST_DISPERSED +
SYLL_NOT_DISPERSED.ALL - SYLL_OVERCOUNT.ALL

Table 4-1. Performance Monitors for Basic Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cy

c
T Description

CPU_OP_CYCLES 0x12 Y N Y 1 C CPU Operating Cycles

IA64_INST_RETIRED 0x08 Y N Y 6 A Retired Itanium® Instructions

Table 4-2. Derived Monitors for Basic Events

Symbol Name Description Equation

IA64_IPC Average Number of Itanium®
Instructions Per Cycle During Itanium
architecture-based Code Sequences

IA64_INST_RETIRED / CPU_OP_CYCLES
Reference Manual for Software Development and Optimization 77

Performance Monitor Events
4.5 Instruction Execution Events
Retired instruction counts, IA64_TAGGED_INST_RETIRED and NOPS_RETIRED, are based on
tag information specified by the address range check and opcode match facilities. A separate event,
PREDICATE_SQUASHED_RETIRED, is provided to count predicated off instructions.

The FP monitors listed in the table capture dynamic information about pipeline flushes and
flush-to-zero occurrences due to floating-point operations. The FP_OPS_RETIRED event counts
the number of retired FP operations.

As Table 4-4 describes, monitors for control and data speculation capture dynamic run-time
information: the number of failed chk.s instructions (INST_FAILED_CHKS_RETIRED.ALL),
the number of advanced load checks and check loads (INST_CHKA_LDC_ALAT.ALL), and
failed advanced load checks and check loads (INST_FAILED_CHKA_LDC_ALAT.ALL) as seen
by the ALAT. The number of retired chk.s instructions is monitored by the
IA64_TAGGED_INST_RETIRED event, given the appropriate opcode mask. Since the Montecito
processor ALAT is updated by operations on mispredicted branch paths, the number of advanced
load checks and check loads need an explicit event (INST_CHKA_LDC_ALAT.ALL).

Table 4-3. Performance Monitors for Instruction Dispersal Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

DISP_STALLED 0x49 N N N 1 Number of cycles dispersal stalled

INST_DISPERSED 0x4d Y N N 6 Syllables dispersed from REN to REG
stage

SYLL_NOT_DISPERSED 0x4e Y N N 5 Syllables not dispersed

SYLL_OVERCOUNT 0x4f Y N N 2 Syllables overcounted

Table 4-4. Performance Monitors for Instruction Execution Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

ALAT_CAPACITY_MISS 0x58 Y Y Y 2 ALAT Entry Replaced

FP_FAILED_FCHKF 0x06 Y N N 1 Failed fchkf

FP_FALSE_SIRSTALL 0x05 Y N N 1 SIR stall without a trap

FP_FLUSH_TO_ZERO 0x0b Y N N 2 FP Result Flushed to Zero

FP_OPS_RETIRED 0x09 Y N N 6 Retired FP operations

FP_TRUE_SIRSTALL 0x03 Y N N 1 SIR stall asserted and leads to a trap

IA64_TAGGED_INST_RETIRED 0x08 Y N Y 6 Retired Tagged Instructions

INST_CHKA_LDC_ALAT 0x56 Y Y Y 2 Advanced Check Loads

INST_FAILED_CHKA_LDC_ALAT 0x57 Y Y Y 1 Failed Advanced Check Loads

INST_FAILED_CHKS_RETIRED 0x55 N N N 1 Failed Speculative Check Loads

LOADS_RETIRED 0xcd Y Y Y 4 Retired Loads

MISALIGNED_LOADS_RETIRED 0xce Y Y Y 4 Retired Misaligned Load Instructions

MISALIGNED_STORES_RETIRED 0xd2 Y Y Y 2 Retired Misaligned Store Instructions

NOPS_RETIRED 0x50 Y N Y 6 Retired NOP Instructions
78 Reference Manual for Software Development and Optimization

Performance Monitor Events
4.6 Stall Events
Montecito processor stall accounting is separated into front-end and back-end stall accounting.
Back-end and front-end events should not be compared since they are counted in different stages of
the pipeline.

The back-end can be stalled due to five distinct mechanisms: FPU/L1D, RSE, EXE,
branch/exception or the front-end. BACK_END_BUBBLE provides an overview of which
mechanisms are producing stalls while the other back-end counters provide more explicit
information broken down by category. Each time there is a stall, a bubble is inserted in only one
location in the pipeline. Each time there is a flush, bubbles are inserted in all locations in the
pipeline. With the exception of BACK_END_BUBBLE, the back-end stall accounting events are
prioritized in order to mimic the operation of the main pipe (i.e. priority form high to low is given
to: BE_FLUSH_BUBBLE.XPN, BE_FLUSH_BUBBLE.BRU, L1D_FPU stalls, EXE stalls, RSE
stalls, front-end stalls). This prioritization guarantees that the events are mutually exclusive and
only the most important cause, the one latest in the pipeline, is counted.

The Montecito processor’s front-end can be stalled due to seven distinct mechanisms: FEFLUSH,
TLBMISS, IMISS, branch, FILL-RECIRC, BUBBLE, IBFULL (listed in priority from high to
low). The front-end stalls have exactly the same effect on the pipeline so their accounting is
simpler.

During every clock in which the CPU is not in a halted state, the back-end pipeline has either a
bubble or it retires 1 or more instructions, CPU_OP_CYCLES = BACK_END_BUBBLE.all +
(IA64_INST_RETIRED >= 1). To further investigate bubbles occurring in the back-end of the
pipeline the following equation holds true: BACK_END_BUBBLE.all = BE_RSE_BUBBLE.all +
BE_EXE_BUBBLE.all + BE_L1D_FPU_BUBBLE.all + BE_FLUSH_BUBBLE.all +
BACK_END_BUBBLE.fe.

PREDICATE_SQUASHED_RETIRED 0x51 Y N Y 6 Instructions Squashed Due to
Predicate Off

STORES_RETIRED 0xd1 Y Y Y 2 Retired Stores

UC_LOADS_RETIRED 0xcf Y Y Y 4 Retired Uncacheable Loads

UC_STORES_RETIRED 0xd0 Y Y Y 2 Retired Uncacheable Stores

Table 4-4. Performance Monitors for Instruction Execution Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

Table 4-5. Derived Monitors for Instruction Execution Events

Symbol Name Description Equation

ALAT_EAR_EVENTS Counts the number of ALAT
events captured by EAR

DATA_EAR_EVENTS

CTRL_SPEC_MISS_RATIO Control Speculation Miss Ratio INST_FAILED_CHKS_RETIRED.ALL /
IA64_TAGGED_INST_RETIRED[chk.s]

DATA_SPEC_MISS_RATIO Data Speculation Miss Ratio INST_FAILED_CHKA_LDC_ALAT.ALL /
INST_CHKA_LDC_ALAT.ALL
Reference Manual for Software Development and Optimization 79

Performance Monitor Events
Note: CPU_OP_CYCLES is not incremented during a HALT state. If a measurement is set up to match
clock cycles to bubbles to instructions retired (as outlined above) and a halt occurs within the
measurement interval, measuring CYCLES_HALTED in PMD10 may be used to compensate.

Each of the stall events (summarized in Table 4-6) take a umask to choose among several available
sub-events. Please refer to the detailed event descriptions in Section 4.15 for a list of available
sub-events and their individual descriptions.

4.7 Branch Events
Note that for branch events, retirement means a branch was reached and committed regardless of
its predicate value. Details concerning prediction results are contained in pairs of monitors. For
accurate misprediction counts, the following measurement must be taken:

BR_MISPRED_DETAIL.[umask] - BR_MISPRED_DETAIL2.[umask]

By performing this calculation for every umask, one can obtain a true value for the
BR_MISPRED_DETAIL event.

The method for obtaining the true value of BR_PATH_PRED is slightly different. When there is
more than one branch in a bundle and one is predicted as taken, all the higher number ports are
forced to a predicted not taken mode without actually knowing the their true prediction.

The true OKPRED_NOTTAKEN predicted path information can be obtained by calculating:

BR_PATH_PRED.[branch type].OKPRED_NOTTAKEN - BR_PATH_PRED2.[branch
type].UNKNOWNPRED_NOTTAKEN using the same “branch type” (ALL, IPREL,
RETURN, NRETIND) specified for both events.

Similarly, the true MISPRED_TAKEN predicted path information can be obtained by calculating:

Table 4-6. Performance Monitors for Stall Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

BACK_END_BUBBLE 0x00 N N N 1 Full pipe bubbles in main pipe

BE_EXE_BUBBLE 0x02 N N N 1 Full pipe bubbles in main pipe due to
Execution unit stalls

BE_FLUSH_BUBBLE 0x04 N N N 1 Full pipe bubbles in main pipe due to
flushes

BE_L1D_FPU_BUBBLE 0xca N N N 1 Full pipe bubbles in main pipe due to
FP or L1D cache

BE_LOST_BW_DUE_TO_FE 0x72 N N N 2 Invalid bundles if BE not stalled for
other reasons

BE_RSE_BUBBLE 0x01 N N N 1 Full pipe bubbles in main pipe due to
RSE stalls

FE_BUBBLE 0x71 N N N 1 Bubbles seen by FE

FE_LOST_BW 0x70 N N N 2 Invalid bundles at the entrance to IB

IDEAL_BE_LOST_BW_DUE_TO_FE 0x73 N N N 2 Invalid bundles at the exit from IB
80 Reference Manual for Software Development and Optimization

Performance Monitor Events
BR_PATH_PRED.[branch type].MISPRED_TAKEN - BR_PATH_PRED2.[branch
type].UKNOWNPRED_TAKEN using the same “branch type” (ALL, IPREL, RETURN,
NRETIND) selected for both events.

BRANCH_EVENT counts the number of events captured by the Execution Trace Buffer. For
detailed information on the ETB please refer to Section 3.3.10.

4.8 Memory Hierarchy
This section summarizes events related to the Montecito processor’s memory hierarchy. The
memory hierarchy events are grouped as follows:

• L1 Instruction Cache and Prefetch Events (Section 4.8.1)

• L1 Data Cache Events (Section 4.8.2)

• L2 Instruction Cache Events (Section 4.8.3)

• L2 Data Cache Events (Section 4.8.4)

• L3 Cache Events (Section 4.8.5)

An overview of the Montecito processor’s three level memory hierarchy and its event monitors is
shown in Figure 4-1. The instruction and the data stream work through separate L1 caches. The L1
data cache is a write-through cache. Two separate L2I and L2D caches serve both the L1
instruction and data caches respectively, and are backed by a large unified L3 cache. Events for
individual levels of the cache hierarchy are described in the Section 4.8.1 through Section 4.8.3.

Table 4-7. Performance Monitors for Branch Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

BE_BR_MISPRED_DETAIL 0x61 Y N Y 1 BE branch misprediction detail

BRANCH_EVENT 0x11 Y N Y 1 Branch Event Captured

BR_MISPRED_DETAIL 0x5b Y N Y 3 FE Branch Mispredict Detail

BR_MISPRED_DETAIL2 0x68 Y N Y 2 FE Branch Mispredict Detail
(Unknown path component)

BR_PATH_PRED 0x54 Y N Y 3 FE Branch Path Prediction Detail

BR_PATH_PRED2 0x6a Y N Y 2 FE Branch Path Prediction Detail
(Unknown prediction component)

ENCBR_MISPRED_DETAIL 0x63 Y N Y 3 Number of encoded branches retired
Reference Manual for Software Development and Optimization 81

Performance Monitor Events
Figure 4-1. Event Monitors in the Itanium® 2 Processor Memory Hierarchy

BUS

L3

L3_MISSES

L3_READ_REFERENCES(d)L3_WRITE_REFERENCES(d)

L3_REFERENCES

L3_STORE_REFERENCES(d) L3_INST_REFERENCES(d)L2_WB_REFERENCES(d)

L3_DATA_READ_REFERENCES(d)

L2I_MISSES

 (d) = derived counter

L2D_REFERENCES L2I_READS

L1IL1D

L1D_READ_MISSES

Processor Pipeline

DATA_REFERENCES
L1I_READSL1I_PREFETCHES

ITLB

L1DTLB

L2DTLB

VHPT Walker

ISB
(write through)

L1DTLB_MISSES

L2DTLB_MISSES
ITLB_INSERTS_HPW

DTLB_INSERTS_HPW

L1I_FILLS

ITLB_MISSES_FETCH

Store Buffer

ISB_BUNPAIRS_IN

L2D
L2I

L2D_MISSES
82 Reference Manual for Software Development and Optimization

Performance Monitor Events
4.8.1 L1 Instruction Cache and Prefetch Events
Table 4-8 describes and summarizes the events that the Montecito processor provides to monitor
L1 instruction cache demand fetch and prefetch activity. The instruction fetch monitors distinguish
between demand fetch (L1I_READS) and prefetch activity (L1I_PREFETCHES). The amount of
data returned from the L2I to the L1 instruction cache and the Instruction Streaming Buffer is
monitored by two events, L1I_FILLS and ISB_LINES_IN. The L1I_EAR_EVENTS monitor
counts how many instruction cache or L1ITLB misses are captured by the instruction event address
register.

The L1 instruction cache and prefetch events can be qualified by the instruction address range
check, but not by the opcode matcher. Since instruction cache and prefetch events occur early in
the processor pipeline, they include events caused by speculative, wrong-path instructions as well
as predicated-off instructions. Since the address range check is based on speculative instruction
addresses rather than retired instruction addresses, event counts may be inaccurate when the range
checker is confined to address ranges smaller than the length of the processor pipeline (see
Chapter 3 for details).

L1I_EAR_EVENTS counts the number of events captured by the Montecito processor’s
instruction EARs. Please refer to Chapter 3 for more detailed information about the instruction
EARs.

Table 4-8. Performance Monitors for L1/L2 Instruction Cache and Prefetch Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

ISB_BUNPAIRS_IN 0x46 Y N N 1 Bundle pairs written from L2I into FE

L1I_EAR_EVENTS 0x43 Y N N 1 Instruction EAR Events

L1I_FETCH_ISB_HIT 0x66 Y N N 1 “Just-in-time” instruction fetch hitting
in and being bypassed from ISB

L1I_FETCH_RAB_HIT 0x65 Y N N 1 Instruction fetch hitting in RAB

L1I_FILLS 0x41 Y N N 1 L1 Instruction Cache Fills

L1I_PREFETCHES 0x44 Y N N 1 L1 Instruction Prefetch Requests

L1I_PREFETCH_STALL 0x67 N N N 1 Why prefetch pipeline is stalled?

L1I_PURGE 0x4b Y N N 1 L1ITLB purges handled by L1I

L1I_PVAB_OVERFLOW 0x69 N N N 1 PVAB overflow

L1I_RAB_ALMOST_FULL 0x64 N N N 1 Is RAB almost full?

L1I_RAB_FULL 0x60 N N N 1 Is RAB full?

L1I_READS 0x40 Y N N 1 L1 Instruction Cache Reads

L1I_SNOOP 0x4a Y Y Y 1 Snoop requests handled by L1I

L1I_STRM_PREFETCHES 0x5f Y N N 1 L1 Instruction Cache line prefetch
requests

L2I_DEMAND_READS 0x42 Y N N 1 L1 Instruction Cache and ISB Misses

L2I_PREFETCHES 0x45 Y N N 1 L2 Instruction Prefetch Requests
Reference Manual for Software Development and Optimization 83

Performance Monitor Events
4.8.2 L1 Data Cache Events
Table 4-10 lists the Montecito processor’s L1 data cache monitors. As shown in Figure 4-1, the
write-through L1 data cache services cacheable loads, integer and RSE loads, check loads and
hinted L2 memory references. DATA_REFERENCES is the number of issued data memory
references.

L1 data cache reads (L1D_READS) and L1 data cache misses (L1D_READ_MISSES) monitor the
read hit/miss rate of the L1 data cache. RSE operations are included in all data cache monitors, but
are not broken down explicitly. The DATA_EAR_EVENTS monitor counts how many data cache
or DTLB misses are captured by the Data Event Address Register. Please refer to Section 3.3.9 for
more detailed information about the data EARs.

L1D cache events have been divided into 6 sets (sets 0,1,2,3,4,6; set 5 is reserved). Events from
different sets of L1D Cache events cannot be measured at the same time. Each set is selected by the
event code programmed into PMC5 (i.e. if you want to measure any of the events in this set, one of
them needs to be measured by PMD5). There are no limitations on umasks. Monitors belonging to
each set are explicitly presented in Table 4-10 through Table 4-16.

Table 4-9. Derived Monitors for L1 Instruction Cache and Prefetch Events

Symbol Name Description Equation

L1I_MISSES L1I Misses L2I_DEMAND_READS

ISB_LINES_IN Number of cache lines written
from L2I (and beyond) into the
front end

ISB_BUNPAIRS_IN/4

L1I_DEMAND_MISS_RATIO L1I Demand Miss Ratio L2I_DEMAND_READS / L1I_READS

L1I_MISS_RATIO L1I Miss Ratio (L1I_MISSES + L2I_PREFETCHES) /
(L1I_READS + L1I_PREFETCHES)

L1I_PREFETCH_MISS_RATIO L1I Prefetch Miss Ratio L2I_PREFETCHES / L1I_PREFETCHES

L1I_REFERENCES Number of L1 Instruction Cache
reads and fills

L1I_READS + L1I_PREFETCHES

Table 4-10. Performance Monitors for L1 Data Cache Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

DATA_EAR_EVENTS 0xc8 Y Y Y 1 L1 Data Cache EAR Events

L1D_READS_SET0 0xc2 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET0 0xc3 Y Y Y 4 Data memory references issued to
memory pipeline

L1D_READS_SET1 0xc4 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET1 0xc5 Y Y Y 4 Data memory references issued to
memory pipeline

L1D_READ_MISSES 0xc7 Y Y Y 2 L1 Data Cache Read Misses
84 Reference Manual for Software Development and Optimization

Performance Monitor Events
4.8.2.1 L1D Cache Events (set 0)

4.8.2.2 L1D Cache Events (set 1)

4.8.2.3 L1D Cache Events (set 2)

4.8.2.4 L1D Cache Events (set 3)

Table 4-11. Performance Monitors for L1D Cache Set 0

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L1DTLB_TRANSFER 0xc0 Y Y Y 1 L1DTLB misses hit in L2DTLB for
access counted in L1D_READS

L2DTLB_MISSES 0xc1 Y Y Y 4 L2DTLB Misses

L1D_READS_SET0 0xc2 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET0 0xc3 Y Y Y 4 Data memory references issued to
memory pipeline

Table 4-12. Performance Monitors for L1D Cache Set 1

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L1D_READS_SET1 0xc4 Y Y Y 2 L1 Data Cache Reads

DATA_REFERENCES_SET1 0xc5 Y Y Y 4 Data memory references issued to
memory pipeline

L1D_READ_MISSES 0xc7 Y Y Y 2 L1 Data Cache Read Misses

Table 4-13. Performance Monitors for L1D Cache Set 2

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

BE_L1D_FPU_BUBBLE 0xca N N N 1 Full pipe bubbles in main pipe due to
FP or L1D cache

Table 4-14. Performance Monitors for L1D Cache Set 3

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

LOADS_RETIRED 0xcd Y Y Y 4 Retired Loads

MISALIGNED_LOADS_RETIRED 0xce Y Y Y 4 Retired Misaligned Load Instructions

UC_LOADS_RETIRED 0xcf Y Y Y 4 Retired Uncacheable Loads
Reference Manual for Software Development and Optimization 85

Performance Monitor Events
4.8.2.5 L1D Cache Events (set 4)

4.8.2.6 L1D Cache Events (set 6)

4.8.3 L2 Instruction Cache Events

Table 4-15. Performance Monitors for L1D Cache Set 4

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

MISALIGNED_STORES_RETIRED 0xd2 Y Y Y 2 Retired Misaligned Store Instructions

STORES_RETIRED 0xd1 Y Y Y 2 Retired Stores

UC_STORES_RETIRED 0xd0 Y Y Y 2 Retired Uncacheable Stores

Table 4-16. Performance Monitors for L1D Cache Set 6

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

LOADS_RETIRED_INTG 0xd8 Y Y Y 2 Integer loads retired

SPEC_LOADS_NATTED 0xd9 Y Y Y 2 Times ld.s or ld.sa NaT’d

Table 4-17. Performance Monitors for L2I Cache

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2I_READS 0x78 Y N Y 1 L2I Cacheable Reads

L2I_UC_READS 0x79 Y N Y 1 L2I uncacheable reads

L2I_VICTIMIZATIONS 0x7a Y N Y 1 L2I victimizations

L2I_RECIRCULATES 0x7b Y N Y 1 L2I recirculates

L2I_L3_REJECTS 0x7c Y N Y 1 L3 rejects

L2I_HIT_CONFLICTS 0x7d Y N Y 1 L2I hit conflicts

L2I_SPEC_ABORTS 0x7e Y N Y 1 L2I speculative aborts

L2I_SNOOP_HITS 0x7f Y N Y 1 L2I snoop hits

Table 4-18. Derived Monitors for L2I Cache (Sheet 1 of 2)

Symbol Name Description Equation

L2I_SNOOPS Number of snoops received by
the L2I.

L1I_SNOOPS

L2I_FILLS L2I Fills L2I_READS.MISS.DMND +
L2I_READS.MISS.PFTCH

L2I_FETCHES Requests made to L2I due to
demand instruction fetches.

L2I_READS.ALL.DMND

L2I_REFERENCES Instructions requests made to L2I L2I_READS.ALL.ALL
86 Reference Manual for Software Development and Optimization

Performance Monitor Events
4.8.4 L2 Data Cache Events
Table 4-19 summarizes the events available to monitor the Montecito processor L2D cache.

Most L2D events have been divided into 8 sets. Only events within two of these sets (or non-L2D
events) can be measured at the same time. These two sets are selected by the event code
programmed into PMC4 and PMC6 (i.e. if you want to measure any of the events in a particular
set, one of these events needs to be measured by PMD4 or PMD6).

Note: The opposite holds true. If PMC4 is not programmed to monitor an L2D event, yet PMC5 or PMC8
are (similarly with PMC6->PMC7/9), PMD values are undefined. Also note that

Any event set can be measured by programming either PMC4 or PMC6. Once PMC4 is
programmed to measure an event from one L2D event set, PMD4, PMD5, and PMD8 can only
measure events from the same L2D event set (PMD5,8 share the umask programmed into PMD4).
Similarly, once PMC6 is programmed to monitor another set (could be the same set as measured by
PMC4), PMD6, PMD7 and PMD9 can measure events from this set only. None of the L2 data
cache events can be measured using PMD10-15.

Support for the .all bit has the same restrictions as the set restrictions. The value set for “.all” in
PMC4 applies to both the L1D events selected by it. Hence, even though the “.all” values in PMC5
and PMC8 are different from the value in PMC4, PMC4’s value selects the capability. This is same
with PMC6,7,9. Original Montecito documentation claimed that Thread 0 PMC4 .me/.all applied
to PMC4-PMC7 but that is no longer true. This bit is available for both the threads. Hence, it is
possible for one thread’s PMDs to monitor just the events credited for that thread while the other
thread’s PMDs can monitor events for both threads (if PMC4.all is set). Note that some events do
not support .all counting. If .all counting is enabled for events that don’t support it, the resulting
counts will be wrong.

While the L2D events support threading, not all counts have access to exact thread id bit needed.
Each count is labeled with one of ActiveTrue, ActiveApprox, or TrueThrd. ActiveTrue means that
the event is counted with the current active thread, and that thread is the only thread that can see the
event when it is counted. ActiveApprox means the event is counted with the current active thread,
but there are some corner cases were the event may actually be due to the other non-Active thread.
It is assumed in most cases that the error due this approximation will be negligible. TrueThrd
indicates that the L2D cache has knowledge of what thread the count belongs to besides the active
thread indication, and that knowledge is always correct.

L2I_MISS_RATIO Percentage of L2I Misses L2I_READS.MISS/L2I_READS.ALL

L2I_HIT_RATIO Percentage of L2I Hits L2I_READS.HIT/L2I_READS.ALL

Table 4-18. Derived Monitors for L2I Cache (Sheet 2 of 2)

Symbol Name Description Equation

Table 4-19. Performance Monitors for L2 Data Cache Events (Sheet 1 of 2)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

.all
capable

Max
Inc/Cyc Description

L2D_OZQ_CANCELS0 0xe0 Y Y Y Y 4 L2D OZQ cancels

L2D_OZQ_FULL 0xe1
0xe3

N N N N 1 L2D OZQ is full

L2D_OZQ_CANCELS1 0xe2 Y Y Y Y 4 L2D OZQ cancels
Reference Manual for Software Development and Optimization 87

Performance Monitor Events
L2D_BYPASS 0xe4 Y Y Y Y/N 1 L2D Hit or Miss Bypass (.all
support is umask dependent)

L2D_OZQ_RELEASE 0xe5 N N N N 1 Clocks with release ordering
attribute existed in L2D OZQ

L2D_REFERENCES 0xe6 Y Y Y Y 4 Data RD/WR access to L2D

L2D_L3ACCESS_CANCEL 0xe8 Y Y Y N 1 Canceled L3 accesses

L2D_OZDB_FULL 0xe9 N N N Y 1 L2D OZ data buffer is full

L2D_FORCE_RECIRC 0xea Y Y Y Y/N 4 Forced recirculates

L2D_ISSUED_RECIRC_OZQ_ACC 0xeb Y Y Y Y 1 Count the number of times a
recirculate issue was
attempted and not preempted

L2DBAD_LINES_SELECTED 0xec Y Y Y Y 4 Valid line replaced when
invalid line is available

L2D_STORE_HIT_SHARED 0xed Y Y Y Y 2 Store hit a shared line

L2D_OZQ_ACQUIRE 0xef N N N Y 1 Clocks with acquire ordering
attribute existed in L2D OZQ

L2D_OPS_ISSUED 0xf0 Y Y Y N 4 Different operations issued by
L2D

L2D_FILLB_FULL 0xf1 N N N N 1 L2D Fill buffer is full

L2D_FILL_MESI_STATE 0xf2 Y Y Y Y 1 MESI states of fills to L2D
cache

L2D_VICTIMB_FULL 0xf3 N N N Y 1 L2D victim buffer is full

L2D_MISSES 0xcb Y Y Y Y 1 An L2D miss has been issued
to the L3, does not include
secondary misses

L2D_INSERT_HITS 0xb1 Y Y Y Y 4 Count Number of Times an
Inserting Data Request Hit in
the L2D.

L2D_INSERT_MISSES 0xb0 Y Y Y Y 4 Count Number of Times an
Inserting Data Request
Missed in the L2D.

Table 4-20. Derived Monitors for L2 Data Cache Events

Symbol Name Description Equation

L2D_READS L2 Data Read Requests L2D_REFERENCES.READS

L2D_WRITES L2 Data Write Requests L2D_REFERENCES.WRITES

L2D_MISS_RATIO Percentage of L2D Misses L2D_INSERT_MISSES/L2D_REFERENCES

L2D_HIT_RATIO Percentage of L2D Hits L2D_INSERT_HITS/L2D_REFERENCES

L2D_RECIRC_ATTEMPTS Number of times the L2
issue logic attempted to
issue a recirculate

L2D_ISSUED_RECIRC_OZQ_ACC +
L2D_OZQ_CANCEL_S0.RECIRC

Table 4-19. Performance Monitors for L2 Data Cache Events (Sheet 2 of 2)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

.all
capable

Max
Inc/Cyc Description
88 Reference Manual for Software Development and Optimization

Performance Monitor Events
4.8.4.1 L2 Data Cache Events (set 0)

L2D_OZQ_FULL is not .all capable.

4.8.4.2 L2 Data Cache Events (set 1)

The L2D_BYPASS count on Itanium 2 processors was too speculative to be useful. It has been
fixed and we now count how many bypasses occurred in a given cycle, rather than signalling a 1
for 1-4 bypasses. The 5 and 7 cycle umasks of L2D_BYPASS and the L2D_OZQ_RELEASE
counts are not .all capable.

4.8.4.3 L2 Data Cache Events (set 2)

4.8.4.4 L2 Data Cache Events (set 3)
L

Table 4-21. Performance Monitors for L2 Data Cache Set 0

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_OZQ_FULL 0xe1
0xe3

N N N 1 L2D OZQ Full-ActiveApprox

L2D_OZQ_CANCELS0 0xe0 Y Y Y 4 L2D OZQ cancels-TrueThrd

L2D_OZQ_CANCELS1 0xe2 Y Y Y 4 L2D OZQ cancels-TrueThrd

Table 4-22. Performance Monitors for L2 Data Cache Set 1

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_BYPASS 0xe4 Y Y Y 4 Count L2 Hit bypasses-TrueThread

L2D_OZQ_RELEASE 0xe5 N N N 1 Effective Release is valid in
Ozq-ActiveApprox

Table 4-23. Performance Monitors for L2 Data Cache Set 2

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_REFERENCES 0xe6 Y Y Y 4 Inserts of Data Accesses into
Ozq-ActiveTrue

Table 4-24. Performance Monitors for L2 Data Cache Set 3

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_L3_ACCESS_CANCEL 0xe8 Y Y Y 1 L2D request to L3 was
cancelled-TrueThrd

L2D_OZDB_FULL 0xe9 N N N 1 L2D OZ data buffer is
full-AcitveApprox
Reference Manual for Software Development and Optimization 89

Performance Monitor Events
L2D_L3_ACCESS_CANCEL events are not .all capable.

4.8.4.5 L2 Data Cache Events (set 4)

Some umasks of L2D_FORCE_RECIRC are not .all capable.

4.8.4.6 L2 Data Cache Events (set 5)

4.8.4.7 L2 Data Cache Events (set 6)
E

4.8.4.8 L2 Data Cache Events (set 7)

L2D_OPS_ISSUED and L2D_FILLB_FULL are not .all capable.

Table 4-25. Performance Monitors for L2 Data Cache Set 4

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_FORCE_RECIRC 0xea Y Y Y 4 Forced recirculates - ActiveTrue or
ActiveApprox

L2D_ISSUED_RECIRC_OZQ_ACC 0xeb Y Y Y 1 Ozq Issued Recirculate - TrueThrd

Table 4-26. Performance Monitors for L2 Data Cache Set 5

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_BAD_LINES_SELECTED 0xec Y Y Y 4 Valid line replaced when invalid line is
available

L2D_STORE_HIT_SHARED 0xed Y Y Y 2 Store hit a shared line

Table 4-27. Performance Monitors for L2 Data Cache Set 6

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_OZQ_ACQUIRE 0xef N N N 1 Valid acquire operation in
Ozq-TrueThrd

Table 4-28. Performance Monitors for L2 Data Cache Set 7

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_OPS_ISSUED 0xf0 Y Y Y 4 Different operations issued by
L2D-TrueThrd

L2D_FILLB_FULL 0xf1 N N N 1 L2D Fill buffer is full-ActiveApprox
90 Reference Manual for Software Development and Optimization

Performance Monitor Events
4.8.4.9 L2 Data Cache Events (set 8)

4.8.4.10 L2 Data Cache Events (Not Set Restricted)

These events are sent to the PMU block directly and thus are not set restricted.

4.8.5 L3 Cache Events
Table 4-31 summarizes the directly-measured L3 cache events. An extensive list of derived events
is provided in Table 4-32.

Table 4-29. Performance Monitors for L2 Data Cache Set 8

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_FILL_MESI_STATE 0xf2 Y Y Y 1 Fill to L2D is of a particular MESI
value. TrueThrd

L2D_VICTIMB_FULL 0xf3 N N N 1 L2D victim buffer is full-ActiveApprox

Table 4-30. Performance Monitors for L2D Cache - Not Set Restricted

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L2D_MISSES 0xcb Y Y Y 1 An L2D miss has been issued to the
L3, does not include secondary
misses.

L2D_INSERT_MISSES 0xb0 Y Y Y 4 An inserting Ozq op was a miss on its
first lookup.

L2D_INSERT_HITS 0xb1 Y Y Y 4 An inserting Ozq op was a hit on its
first lookup.

Table 4-31. Performance Monitors for L3 Unified Cache Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

L3_LINES_REPLACED 0xdf N N N 1 L3 Cache Lines Replaced
MESI filtering capability

L3_MISSES 0xdc Y Y Y 1 L3 Misses

L3_READS 0xdd Y Y Y 1 L3 Reads
MESI filtering capability

L3_REFERENCES 0xdb Y Y Y 1 L3 References

L3_WRITES 0xde Y Y Y 1 L3 Writes
MESI filtering capability

L3_INSERTS 0xda 1 L3 Cache lines inserted (allocated)
MESI filtering capability
Reference Manual for Software Development and Optimization 91

Performance Monitor Events
4.9 System Events
The debug register match events count how often the address of any instruction or data breakpoint
register (IBR or DBR) matches the current retired instruction pointer
(CODE_DEBUG_REGISTER_MATCHES) or the current data memory address
(DATA_DEBUG_REGISTER_MATCHES). CPU_CPL_CHANGES counts the number of
privilege level transitions due to interruptions, system calls (epc), returns (demoting branch), and
rfi instructions.

Table 4-32. Derived Monitors for L3 Unified Cache Events

Symbol Name Description Equation

L3_DATA_HITS L3 Data Read Hits L3_READS.DATA_READ.HIT

L3_DATA_MISS_RATIO L3 Data Miss Ratio (L3_READS.DATA_READ.MISS +
L3_WRITES.DATA_WRITE.MISS) /
(L3_READS.DATA_READ.ALL +
L3_WRITES.DATA_WRITE.ALL)

L3_DATA_READ_MISSES L3 Data Read Misses L3_READS.DATA_READ.MISS

L3_DATA_READ_RATIO Ratio of L3 References that are
Data Read References

L3_READS.DATA_READ.ALL /
L3_REFERENCES

L3_DATA_READ_REFEREN
CES

L3 Data Read References L3_READS.DATA_READ.ALL

L3_INST_HITS L3 Instruction Hits L3_READS.INST_FETCH.HIT

L3_INST_MISSES L3 Instruction Misses L3_READS.INST_FETCH.MISS

L3_INST_MISS_RATIO L3_READS.INST_FETCH.MISS /
L3_READS.INST_FETCH.ALL

L3_INST_RATIO Ratio of L3 References that are
Instruction References

L3_READS.INST_FETCH.ALL /
L3_REFERENCES

L3_INST_REFERENCES L3 Instruction References L3_READS.INST_FETCH.ALL

L3_MISS_RATIO Percentage Of L3 Misses L3_MISSES/L3_REFERENCES

L3_READ_HITS L3 Read Hits L3_READS.READS.HIT

L3_READ_MISSES L3 Read Misses L3_READS.READS.MISS

L3_READ_REFERENCES L3 Read References L3_READS.READS.ALL

L3_STORE_HITS L3 Store Hits L3_WRITES.DATA_WRITE.HIT

L3_STORE_MISSES L3 Store Misses L3_WRITES.DATA_WRITE.MISS

L3_STORE_REFERENCES L3 Store References L3_WRITES.DATA_WRITE.ALL

L2_WB_HITS L2D Writeback Hits L3_WRITES.L2_WB.HIT

L2_WB_MISSES L2D Writeback Misses L3_WRITES.L2_WB.MISS

L2_WB_REFERENCES L2D Writeback References L3_WRITES.L2_WB.ALL

L3_WRITE_HITS L3 Write Hits L3_WRITES.ALL.HIT

L3_WRITE_MISSES L3 Write Misses L3_WRITES.ALL.MISS

L3_WRITE_REFERENCES L3 Write References L3_WRITES.ALL.ALL
92 Reference Manual for Software Development and Optimization

Performance Monitor Events
4.10 TLB Events
The Montecito processor instruction and data TLBs and the virtual hash page table walker are
monitored by the events described in Table 4-35.

L1ITLB_REFERENCES and L1DTLB_REFERENCES are derived from the respective
instruction/data cache access events. Note that ITLB_REFERENCES does not include prefetch
requests made to the L1I cache (L1I_PREFETCH_READS). This is because prefetches are
cancelled when they miss in the ITLB and thus do not trigger VHPT walks or software TLB miss
handling. ITLB_MISSES_FETCH and L2DTLB_MISSES count TLB misses.
L1ITLB_INSERTS_HPW and DTLB_INSERTS_HPW count the number of instruction/data TLB
inserts performed by the virtual hash page table walker.

Table 4-33. Performance Monitors for System Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

CPU_CPL_CHANGES 0x13 N N N 1 Privilege Level Changes

DATA_DEBUG_REGISTER_FAULT 0x52 N N N 1 Fault due to data debug reg. Match to
load/store instruction

DATA_DEBUG_REGISTER_MATCH
ES

0xc6 Y Y Y 1 Data debug register matches data
address of memory reference

SERIALIZATION_EVENTS 0x53 N N N 1 Number of srlz.I instructions

CYCLES_HALTED 0x18 N N N 1 Number of core cycles the thread is in
low-power halted state.
NOTE: only PMC/PMD10 pair is
capable of counting this event

Table 4-34. Derived Monitors for System Events

Symbol Name Description Equation

CODE_DEBUG_REGISTER_
MATCHES

Code Debug Register Matches IA64_TAGGED_INST_RETIRED

Table 4-35. Performance Monitors for TLB Events

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

DTLB_INSERTS_HPW 0xc9 Y Y Y 4 Hardware Page Walker inserts to
DTLB

HPW_DATA_REFERENCES 0x2d Y Y Y 4 Data memory references to VHPT

L2DTLB_MISSES 0xc1 Y Y Y 4 L2DTLB Misses

L1ITLB_INSERTS_HPW 0x48 Y N N 1 L1ITLB Hardware Page Walker
Inserts

ITLB_MISSES_FETCH 0x47 Y N N 1 ITLB Misses Demand Fetch

L1DTLB_TRANSFER 0xc0 Y Y Y 1 L1DTLB misses that hit in the
L2DTLB for accesses counted in
L1D_READS
Reference Manual for Software Development and Optimization 93

Performance Monitor Events
The Montecito processor has 2 data TLBs called L1DTLB and L2DTLB (also referred to as
DTLB). These TLBs are in parallel and the L2DTLB is the larger and slower of the two.The
possible actions for the combination of hits and misses in these TLBs are outlined below:

• L1DTLB_hit=0, L2DTLB_hit=0: If enabled, HPW kicks in and inserts a translation into one
or both TLBs.

• L1DTLB_hit=0, L2DTLB_hit=1: If floating-point, no action is taken; else a transfer is made
from L2DTLB to L1DTLB.

• L1DTLB_hit=1, L2DTLB_hit=0: If enabled, HPW kicks in and inserts a translation into one
or both TLBs.

• L1DTLB_hit=1, L2DTLB_hit=1: No action is taken.

When a memory operation goes down the memory pipeline, DATA_REFERENCES will count it.
If the translation does not exist in the L2DTLB, then L2DTLB_MISSES will count it. If the HPW
is enabled, then HPW_DATA_REFERENCES will count it. If the HPW finds the data in VHPT, it
will insert it in the L1DTLB and L2DTLB (as needed). If the translation exists in the L2DTLB, the
only case that some work is done is when translation does not exist in the L1DTLB. If the operation
is serviced by the L1D (see L1D_READS description), L1DTLB_TRANSFER will count it. For
the purpose of calculating the TLB miss ratios, VHPT memory references have been excluded from
the DATA_REFERENCES event and provided VHPT_REFERENCES for the situations where one
might want to add them in.

Due to the TLB hardware design, there are some corner cases, where some of these events will
show activity even though the instruction causing the activity never reaches retirement (they are
marked so). Since the processor is stalled even for these corner cases, they are included in the
counts and as long as all events that are used for calculating a metric are consistent with respect to
this issue, fairly accurate numbers are expected.

Table 4-36. Derived Monitors for TLB Events

Symbol Name Description Equation

L1DTLB_EAR_EVENTS Counts the number of L1DTLB
events captured by the EAR

DATA_EAR_EVENTS

L2DTLB_MISS_RATIO L2DTLB miss ratio L2DTLB_MISSES /
DATA_REFERENCES_SET0 or
L2DTLB_MISSES /
DATA_REFERENCES_SET1

L1DTLB_REFERENCES L1DTLB References DATA_REFERENCES_SET0 or
DATA_REFERENCES_SET1

L1ITLB_EAR_EVENTS Provides information on the
number of L1ITLB events
captured by the EAR. This is a
subset of L1I_EAR_EVENTS

L1I_EAR_EVENTS

L1ITLB_MISS_RATIO L1ITLB miss ratio ITLB_MISSES_FETCH.L1ITLB /
L1I_READS

L1ITLB_REFERENCES L1ITLB References L1I_READS

L1DTLB_FOR_L1D_MISS_R
ATIO

Miss Ratio of L1DTLB servicing
the L1D

L1DTLB_TRANSFER /
L1D_READS_SET0 or
L1DTLB_TRANSFER /
L1D_READS_SET1
94 Reference Manual for Software Development and Optimization

Performance Monitor Events
4.11 System Bus Events
Table 4-40 lists the system bus transaction monitors. Many of the listed bus events take a umask
that qualifies the event by initiator. For all bus events, when “per cycles” is mentioned, SI clock
cycles (bus clock multiplied by bus ratio) are inferred rather than bus clock cycles unless otherwise
specified. Numerous derived events have been included in Table 4-41.

Table 4-37. Performance Monitors for System Bus Events (Sheet 1 of 3)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

BUS_ALL 0x87 N N N 1 Bus Transactions

ER_BRQ_LIVE_REQ_HI 0xb8 N N N 2 BRQ Live Requests (two
most-significant-bit of the 5-bit
outstanding BRQ request count)

ER_BRQ_LIVE_REQ_LO 0xb9 N N N 7 BRQ Live Requests (three
least-significant-bit of the 5-bit
outstanding BRQ request count)

ER_BRQ_REQ_INSERTED 0xba N N N 1 BRQ Requests Inserted

ER_BKSNP_ME_ACCEPTED 0xbb N N N 1 BacksnoopMe Requests accepted
into the BRQ from the L2D (used by
the L2D to get itself out of potential
forward progress situations)

ER_REJECT_ALL_L1_REQ 0xbc N N N 1 Number of cycles in which the BRQ
was rejecting all L1I/L1D requests (for
the “Big Hammer” forward progress
logic)

ER_REJECT_ALL_L1D_REQ 0xbd N N N 1 Number of cycles in which the BRQ
was rejecting all L1D requests (for
L1D/L1I forward progress)

ER_REJECT_ALL_L1I_REQ 0xbe N N N 1 Number of cycles in which the BRQ
was rejecting all L1I requests (for
L1D/L1I forward progress)

BUS_DATA_CYCLE 0x88 N N N 1 Valid data cycle on the Bus

BUS_HITM 0x84 N N N 1 Bus Hit Modified Line Transactions

BUS_IO 0x90 N N N 1 IA-32 Compatible IO Bus
Transactions

SI_IOQ_LIVE_REQ_HI 0x98 N N N 1 In-order Bus Queue Requests (one
most-significant-bit of the 4-bit
outstanding IOQ request count)

SI_IOQ_LIVE_REQ_LO 0x97 N N N 7 In-order Bus Queue Requests (three
least-significant-bit of the 4-bit
outstanding IOQ request count)

BUS_B2B_DATA_CYCLES 0x93 N N N 1 Back-to-back bursts of data

SI_CYCLES 0x8e N N N 1 Counts SI cycles

BUS_MEMORY 0x8a N N N 1 Bus Memory Transactions

BUS_MEM_READ 0x8b N N N 1 Full Cache line D/I memory RD, RD
invalidate, and BRIL

ER_MEM_READ_OUT_HI 0xb4 N N N 2 Outstanding memory RD transactions
(upper two bits)
Reference Manual for Software Development and Optimization 95

Performance Monitor Events
ER_MEM_READ_OUT_LO 0xb5 N N N 7 Outstanding memory RD transactions
(lower three bits)

BUS_RD_DATA 0x8c N N N 1 Bus Read Data Transactions

BUS_RD_HIT 0x80 N N N 1 Bus Read Hit Clean Non-local Cache
Transactions

BUS_RD_HITM 0x81 N N N 1 Bus Read Hit Modified Non-local
Cache Transactions

BUS_RD_INVAL_BST_HITM 0x83 N N N 1 Bus BRIL Burst Transaction Results
in HITM

BUS_RD_INVAL_HITM 0x82 N N N 1 Bus BIL Transaction Results in HITM

BUS_RD_IO 0x91 N N N 1 IA-32 Compatible IO Read
Transactions

BUS_RD_PRTL 0x8d N N N 1 Bus Read Partial Transactions

ER_SNOOPQ_REQ_HI 0xb6 N N N 1 ER Snoop Queue Requests (most
significant bit of 4-bit count)

ER_SNOOPQ_REQ_LO 0xb7 N N N 7 ER Snoop Queue Requests (three
least-significant-bits or 4-bit count)

BUS_SNOOP_STALL_CYCLES 0x8f N N N 1 Bus Snoop Stall Cycles (from any
agent)

BUS_WR_WB 0x92 N N N 1 Bus Write Back Transactions

MEM_READ_CURRENT 0x89 N N N 1 Current Mem Read Transactions On
Bus

SI_RQ_INSERTS 0x9e N N N 2 SI request queue inserts

SI_RQ_LIVE_REQ_HI 0xa0 N N N 1 SI request queue live requests
(most-significant bit)

SI_RQ_LIVE_REQ_LO 0x9f N N N 7 SI request queue live requests
(least-significant three bits)

SI_WRITEQ_INSERTS 0xa1 N N N 2 SI write queue inserts

SI_WRITEQ_LIVE_REQ_HI 0xa3 N N N 1 SI write queue live requests
(most-significant bit)

SI_WRITEQ_LIVE_REQ_LO 0xa2 N N N 7 SI write queue live requests
(least-significant three bits)

SI_WAQ_COLLISIONS 0xa4 N N N 1 SI write address queue collisions
(incoming FSB snoop collides with an
entry in WAQ)

SI_CCQ_INSERTS 0xa5 N N N 2 SI clean castout queue inserts

SI_CCQ_LIVE_REQ_HI 0xa7 N N N 1 SI clean castout queue live requests
(most-significant bit)

SI_CCQ_LIVE_REQ_LO 0xa6 N N N 7 SI clean castout queue live requests
(least-significant three bits)

SI_CCQ_COLLISIONS 0xa8 N N N 1 SI clean castout queue collisions
(incoming FSB snoop collides with an
entry in CCQ)

SI_IOQ_COLLISIONS 0xaa N N N 1 SI inorder queue collisions (outgoing
transaction collides with an entry in
IOQ)

Table 4-37. Performance Monitors for System Bus Events (Sheet 2 of 3)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description
96 Reference Manual for Software Development and Optimization

Performance Monitor Events
SI_SCB_INSERTS 0xab N N N 1 SI snoop coalescing buffer inserts

SI_SCB_LIVE_REQ_HI 0xad N N N 1 SI snoop coalescing buffer live
requests (most-significant bit)

SI_SCB_LIVE_REQ_LO 0xac N N N 7 SI snoop coalescing buffer live
requests (least-significant three bits)

SI_SCB_SIGNOFFS 0xae N N N 1 SI snoop coalescing buffer coherency
signoffs

SI_WDQ_ECC_ERRORS 0xaf N N N 1 SI write data queue ECC errors

Table 4-38. Derived Monitors for System Bus Events (Sheet 1 of 2)

Symbol Name Description Equation

BIL_HITM_LINE_RATIO BIL Hit to Modified Line Ratio BUS_RD_INVAL_HITM /
BUS_MEMORY or
BUS_RD_INVAL_HITM /
BUS_RD_INVAL

BIL_RATIO BIL Ratio BUS_RD_INVAL / BUS_MEMORY

BRIL_HITM_LINE_RATIO BRIL Hit to Modified Line Ratio BUS_RD_INVAL_BST_HITM /
BUS_MEMORY or
BUS_RD_INVAL_BST_HITM /
BUS_RD_INVAL

BUS_ADDR_BPRI Bus transactions used by IO
agent.

BUS_MEMORY.*.IO

BUS_BRQ_LIVE_REQ BRQ Live Requests ER_BRQ_LIVE_REQ_HI * 8 +
ER_BRQ_LIVE_REQ_LO

BUS_BURST Full cache line memory
transactions (BRL, BRIL, BWL)

BUS_MEMORY.EQ_128BYTE.*

BUS_HITM_RATIO Bus Modified Line Hit Ratio BUS_HITM / BUS_MEMORY or
BUS_HITM / BUS_BURST

BUS_HITS_RATIO Bus Read Hit to Shared Line
Ratio

BUS_RD_HIT / BUS_RD_ALL or
BUS_RD_HIT / BUS_MEMORY

BUS_IOQ_LIVE_REQ Inorder Bus Queue Requests SI_IOQ_LIVE_REQ_HI * 8+
SI_IOQ_LIVE_REQ_LO

BUS_IO_CYCLE_RATIO Bus I/O Cycle Ratio BUS_IO / BUS_ALL

BUS_IO_RD_RATIO Bus I/O Read Ratio BUS_RD_IO / BUS_IO

BUS_MEM_READ_OUTSTA
NDING

Number of outstanding memory
RD transactions

ER_MEM_READ_OUT_HI * 8 +
ER_MEM_READ_OUT_LO

BUS_PARTIAL Less than cache line memory
transactions (BRP, BWP)

BUS_MEMORY.LT_128BYTE.*

BUS_PARTIAL_RATIO Bus Partial Access Ratio BUS_MEMORY.LT_128BYTE /
BUS_MEMORY.ALL

BUS_RD_ALL Full cache line memory read
transactions (BRL)

BUS_MEM_READ.BRL.*

BUS_RD_DATA_RATIO Cacheable Data Fetch Bus
Transaction Ratio

BUS_RD_DATA / BUS_ALL or
BUS_RD_DATA / BUS_MEMORY

Table 4-37. Performance Monitors for System Bus Events (Sheet 3 of 3)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description
Reference Manual for Software Development and Optimization 97

Performance Monitor Events
4.11.1 System Bus Conventions
Table 4-39 defines the conventions that will be used when describing the Montecito processor
system bus transaction monitors in this section, as well as the individual monitor descriptions in
Section 4.15.

Other transactions besides those listed in Table 4-42 include Deferred Reply, Special Transactions,
Interrupt, Interrupt Acknowledge, and Purge TC. Note that the monitors will count if any
transaction gets a retry response from the priority agent.

To support the analysis of snoop traffic in a multiprocessor system, the Montecito processor
provides local processor and remote response monitors. The local processor snoop events
(SI_SCB_INSERTS and SI_SCB_SIGNOFFS) monitor inbound snoop traffic. The remote
response events (BUS_RD_HIT, BUS_RD_HITM, BUS_RD_INVAL_HITM and
BUS_RD_INVAL_BST_HITM) monitor the snoop responses of other processors to bus
transactions that the monitoring processor originated. Table 4-40 summarizes the remote snoop
events by bus transaction.

4.11.2 Extracting Memory Latency from Montecito Performance
Counters
On the Itanium 2 processors, several events were provided to approximate memory latency as seen
by the processor using the following equation:

((BUS_MEM_READ_OUT_HI * 8) + BUS_MEM_READ_OUT_LO) /
(BUS_MEM_READ.BRL.SELF + BUS_MEM_READ.BRIL.SELF)

BUS_RD_HITM_RATIO Bus Read Hit to Modified Line
Ratio

BUS_RD_HITM / BUS_RD_ALL or
BUS_RD_HITM / BUS_MEMORY

BUS_RD_INSTRUCTIONS Full cache line instruction
memory read transactions (BRP)

BUS_RD_ALL - BUS_RD_DATA

BUS_RD_INVAL 0 byte memory read-invalidate
transactions (BIL)

BUS_MEM_READ.BIL.*

BUS_RD_INVAL_BST Full cache line read-invalidate
transactions (BRIL)

BUS_MEM_READ.BRIL.*

BUS_RD_INVAL_BST_MEM
ORY

Bus Read Invalid Line in Burst
transactions (BRIL) satisfied by
memory

BUS_RD_INVAL_BST -
BUS_RD_INVAL_BST_HITM

BUS_RD_INVAL_MEMORY Bus Read Invalidate Line
transactions (BIL) satisfied from
memory

BUS_RD_INVAL -
BUS_RD_INVAL_HITM

BUS_RD_INVAL_ALL_HITM Bus Read Invalidate Line
transactions (BRIL and BIL)
resulting in HITMs

BUS_RD_INVAL_BST_HITM +
BUS_RD_INVAL_HITM

BUS_RD_PRTL_RATIO Bus Read Partial Access Ratio BUS_RD_PRTL / BUS_MEMORY

BUS_WB_RATIO Writeback Ratio BUS_WR_WB / BUS_MEMORY or
BUS_WR_WB / BUS_BURST

CACHEABLE_READ_RATIO Cacheable Read Ratio (BUS_RD_ALL +
BUS_MEM_READ.BRIL) /
BUS_MEMORY

Table 4-38. Derived Monitors for System Bus Events (Sheet 2 of 2)

Symbol Name Description Equation
98 Reference Manual for Software Development and Optimization

Performance Monitor Events
The BUS_MEM_READ_OUT starts counting one bus clock after a request is issued on the system
interface (ADS) and stops incrementing when the request completes its first data transfer or is
retried. In each core cycle after counting is initiated, the number of live requests in that cycle are
added to the count. This count may as high as 15. For ease of implementation, the count is split into
two parts: BUS_MEM_READ_OUT_LO sums up the low order 3 bits of the number of live
requests, while BUS_MEM_READ_OUT_HI sums up the high order bit.

In the above formula, the numerator provides the number of live requests and the denominator
provides the number of requests that are counted. When the live count is divided by the number of
transactions issued, you get an average lifetime of a transaction issued on the system interface (a
novel application of Little’s Law).

The Montecito processor has similar counters: ER_MEM_READ_OUT.{HI,LO}. Using these
events to derive Montecito memory latency will give results that are higher than the true memory
latency seen in Montecito. The main reason for this is the fact that the start and stop point of the
counters are not equivalent between the two processors. Specifically, in Montecito,
ER_MEM_READ_OUT.{HI,LO}events start counting the core clock after a request is sent to the
arbiter. The Montecito ER_MEM_READ_OUT_{HI,LO}events stop counting when the request
receives its first data transfer within the external request logic (after the arbiter). Thus, these events
include the entire time requests spend in the arbiter (pre and post request).

The requests may remain in the arbiter for a long or short time depending on system interface
behaviors. Arbiter queue events SI_RQ_LIVE_REQ.{HI,LO} may be used to reduce the effects of
arbiter latency on the calculations. Unfortunately, these events are not sufficient to successfully
enable a completely equivalent measurement for Itanium 2 processors. The arbiter time back from
FSB to core is fixed for a specific arbiter to system interface ratio. These arbiter events may occur
in a different time domain from core events

The new memory latency approximation formula for Montecito, with corrective events included, is
below:

(ER_MEM_READ_OUT_HI * 8 + ER_MEM_READ_OUT_LO) – (SI_RQ_LIVE_REQ_HI * 8
+ SI_RQ_LIVE_REQ_LO) / (BUS_MEM_READ)

Note that the Data EAR may be used to compare data cache load miss latency between Madison
and Montecito. However, an access’ memory latency, as measured by the Data EAR or other cycle
counters will be inherently greater on Montecito compared to previous Itanium 2 processors due to
the latency the arbiter adds to both the outbound request and inbound data transfer. Also, the Data
EAR encompasses the entire latency through the processor’s memory hierarchy and queues
without details into time spent in any specific queue.

Even with this improved formula, the estimated memory latency for Montecito will appear greater
than previous Itanium 2 processors. We have not observed any design point that suggests that the
system interface component of memory accesses are excessive on Montecito.

We have observed that snoop stalls and write queue pressure lead to additional memory latency on
Montecito compared to previous Itanium 2 processors, but these are phenomena that impact the
pre-system or post-system interface aspect of a memory latency and are very workload dependant
in their impact. Specifically, the write queues need to be sufficiently filled to cause back pressure
on the victimizing read requests such that a new read request cannot issue to the system interface
because it cannot identify a victim in the L3 cache to ensure its proper allocation. This sever
pressure has only been seen with steady streams of every read requests resulting in a dirty L3
victim. Additional snoop stalls should only add latency to transactions that receive a HITM snoop
response (cache to cache transfers) because non-HITM responses are satisfied by the memory and
memory access should be initiated as a consequence of the initial transaction rather than its snoop
response.
Reference Manual for Software Development and Optimization 99

Performance Monitor Events
The figure below (Figure 4-2) shows the latency is determined using the above calculations on
Itanium 2 and Montecito processors. The red portion of the Montecito diagram shows latency
accounted for by the correction found in the Montecito calculation.

4.12 RSE Events
Register Stack Engine events are presented in Table 4-39. The number of current/dirty registers are
split among three monitors since there are 96 physical registers in the Montecito processor.

Figure 4-2. Extracting Memory Latency from PMUs

T i m e c a l c u l a t e d
w i t h P M U e v e n t s

T i m e c a l c u l a t e d w i t h
P M U e v e n t s

L o a d I s s u e d t o
c a c h e s

L o a d i s s u e d o n
s y s t e m i n t e r f a c e

D a t a d e l i v e r y
s t a r t e d

D a t a r e t u r n e d t o
r e g i s t e r

L o a d I s s u e d t o
c a c h e s

L o a d i s s u e d o n
s y s t e m i n t e r f a c e

D a t a d e l i v e r y
s t a r t e d

D a t a r e t u r n e d t o
r e g i s t e r

L o a d i s s u e d t o
a r b i t e r

D a t a d e l i v e r y
s e e n b y e x t e r n a l
r e q u e s t l o g i c

I t a n i u m 2

M o n t e c i t o

T i m e i n
A r b i t e r

Table 4-39. Performance Monitors for RSE Events (Sheet 1 of 2)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

RSE_CURRENT_REGS_2_TO_0 0x2b N N N 7 Current RSE registers

RSE_CURRENT_REGS_5_TO_3 0x2a N N N 7 Current RSE registers

RSE_CURRENT_REGS_6 0x26 N N N 1 Current RSE registers

RSE_DIRTY_REGS_2_TO_0 0x29 N N N 7 Dirty RSE registers
100 Reference Manual for Software Development and Optimization

Performance Monitor Events
4.13 Hyper-Threading Events
Table 4-41 summarizes the events available on the Montecito processor to measure thread switch
activity. To determine the raw number of thread switch events that occurs during a given
monitoring session, a user should capture THREAD_SWITCH_EVENTS.ALL.

RSE_DIRTY_REGS_5_TO_3 0x28 N N N 7 Dirty RSE registers

RSE_DIRTY_REGS_6 0x24 N N N 1 Dirty RSE registers

RSE_EVENT_RETIRED 0x32 N N N 1 Retired RSE operations

RSE_REFERENCES_RETIRED 0x20 Y Y Y 2 RSE Accesses

Table 4-40. Derived Monitors for RSE Events

Symbol Name Description Equation

RSE_CURRENT_REGS Current RSE registers before an
RSE_EVENT_RETIRED
occurred

RSE_CURRENT_REGS_6 * 64 +
RSE_CURRENT_REGS_5_TO_3 * 8 +
RSE_CURRENT_REGS_2_TO_0

RSE_DIRTY_REGS Dirty RSE registers before an
RSE_EVENT_RETIRED
occurred

RSE_DIRTY_REGS_6 * 64 +
RSE_DIRTY_REGS_5_TO_3 * 8 +
RSE_DIRTY_REGS_2_TO_0

RSE_LOAD_LATENCY_PEN
ALTY

Counts the number of cycles we
have stalled due to retired RSE
loads. (Every time RSE.BOF
reaches RSE.storereg and RSE
has not issued all of the loads
necessary for the fill.)

BE_RSE_BUBBLE.UNDERFLOW

RSE_AVG_LOAD_LATENCY Average latency for RSE loads RSE_LOAD_LATENCY_PENALTY /
RSE_REFERENCES_RETIRED.LOAD

RSE_AVG_CURRENT_REGS Average number of current
registers

RSE_CURRENT_REGS /
RSE_EVENT_RETIRED

RSE_AVG_DIRTY_REGS Average number of dirty registers RSE_DIRTY_REGS /
RSE_EVENT_RETIRED

RSE_AVG_INVALID_REGS Average number of invalid
registers. Assumes number of
clean registers is always 0.

96 - (RSE_DIRTY_REGS +
RSE_CURRENT_REGS) /
RSE_EVENT_RETIRED

Table 4-39. Performance Monitors for RSE Events (Sheet 2 of 2)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

Table 4-41. Performance Monitors for Multi-thread Events (Sheet 1 of 2)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

THREAD_SWITCH_EVENTS 0x0c N N N 1 Counts number of times the thread is
switched out due to various causes.

THREAD_SWITCH_GATED 0x0d N N N 1 Number of times thread switch outs
are gated and their causes
Reference Manual for Software Development and Optimization 101

Performance Monitor Events
4.14 Performance Monitors Ordered by Event Code
Table 4-42 presents all of the performance monitors provided in the Montecito processor ordered
by their event code.

THREAD_SWITCH_CYCLE 0x0e N N N 1 Various overhead cycles spent for
thread switches

THREAD_SWITCH_STALL 0x0f N N N 1 Times main pipeline is stalled more
than a threshold value set before a
thread switch

Table 4-41. Performance Monitors for Multi-thread Events (Sheet 2 of 2)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc Description

Table 4-42. All Performance Monitors Ordered by Code (Sheet 1 of 7)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc

T
y
p
e

Description

BACK_END_BUBBLE 0x00 N N N 1 A Full pipe bubbles in main pipe

BE_RSE_BUBBLE 0x01 N N N 1 A Full pipe bubbles in main pipe due
to RSE stalls

BE_EXE_BUBBLE 0x02 N N N 1 A Full pipe bubbles in main pipe due
to Execution unit stalls

FP_TRUE_SIRSTALL 0x03 Y N N 1 A SIR stall asserted and leads to a
trap

BE_FLUSH_BUBBLE 0x04 N N N 1 A Full pipe bubbles in main pipe due
to flushes

FP_FALSE_SIRSTALL 0x05 Y N N 1 A SIR stall without a trap

FP_FAILED_FCHKF 0x06 Y N N 1 A Failed fchkf

IA64_INST_RETIRED 0x08 Y N Y 6 A Retired Itanium® Instructions

IA64_TAGGED_INST_RETIRED 0x08 Y N Y 6 A Retired Tagged Instructions

FP_OPS_RETIRED 0x09 Y N N 6 A Retired FP operations

FP_FLUSH_TO_ZERO 0x0b Y N N 2 A FP Result Flushed to Zero

THREAD_SWITCH_EVENTS 0x0c N N N 1 A Thread switch events and cause

THREAD_SWITCH_GATED 0x0d N N N 1 A TS gated and their sources

THREAD_SWITCH_CYCLE 0x0e N N N 1 A Various TS related periods

THREAD_SWITCH_STALLS 0x0f N N N 1 A Pipe line stalls due to TS

BRANCH_EVENT 0x11 Y N Y 1 A Branch Event Captured

CPU_OP_CYCLES 0x12 Y N Y 1 C CPU Operating Cycles

CPU_CPL_CHANGES 0x13 N N N 1 A Privilege Level Changes

CPU_OP_CYCLES_HALTED 0x18 N N N 7 C CPU Operating Cycles Halted

RSE_REFERENCES_RETIRED 0x20 Y Y Y 2 A RSE Accesses

RSE_DIRTY_REGS_6 0x24 N N N 1 A Dirty RSE registers
102 Reference Manual for Software Development and Optimization

Performance Monitor Events
RSE_CURRENT_REGS_6 0x26 N N N 1 A Current RSE registers

RSE_DIRTY_REGS_5_TO_3 0x28 N N N 7 A Dirty RSE registers

RSE_DIRTY_REGS_2_TO_0 0x29 N N N 7 A Dirty RSE registers

RSE_CURRENT_REGS_5_TO_3 0x2a N N N 7 A Current RSE registers

RSE_CURRENT_REGS_2_TO_0 0x2b N N N 7 A Current RSE registers

HPW_DATA_REFERENCES 0x2d Y Y Y 4 A Data memory references to VHPT

RSE_EVENT_RETIRED 0x32 N N N 1 A Retired RSE operations

L1I_READS 0x40 Y N N 1 A L1 Instruction Cache Reads

L1I_FILLS 0x41 Y N N 1 F L1 Instruction Cache Fills

L2I_DEMAND_READS 0x42 Y N N 1 A L1 Instruction Cache and ISB
Misses

L1I_EAR_EVENTS 0x43 Y N N 1 F Instruction EAR Events

L1I_PREFETCHES 0x44 Y N N 1 A L1 Instruction Prefetch Requests

L2I_PREFETCHES 0x45 Y N N 1 A L2 Instruction Prefetch Requests

ISB_BUNPAIRS_IN 0x46 Y N N 1 F Bundle pairs written from L2 into FE

ITLB_MISSES_FETCH 0x47 Y N N 1 A ITLB Misses Demand Fetch

L1ITLB_INSERTS_HPW 0x48 Y N N 1 A L1ITLB Hardware Page Walker
Inserts

DISP_STALLED 0x49 N N N 1 A Number of cycles dispersal stalled

L1I_SNOOP 0x4a Y Y Y 1 C Snoop requests handled by L1I

L1I_PURGE 0x4b Y N N 1 C L1ITLB purges handled by L1I

INST_DISPERSED 0x4d Y N N 6 A Syllables Dispersed from REN to
REG stage

SYLL_NOT_DISPERSED 0x4e Y N N 5 A Syllables not dispersed

SYLL_OVERCOUNT 0x4f Y N N 2 A Syllables overcounted

NOPS_RETIRED 0x50 Y N Y 6 A Retired NOP Instructions

PREDICATE_SQUASHED_RETIRED 0x51 Y N Y 6 A Instructions Squashed Due to
Predicate Off

DATA_DEBUG_REGISTER_FAULT 0x52 N N N 1 A Fault due to data debug reg. Match
to load/store instruction

SERIALIZATION_EVENTS 0x53 N N N 1 A Number of srlz.I instructions

BR_PATH_PRED 0x54 Y N Y 3 A FE Branch Path Prediction Detail

INST_FAILED_CHKS_RETIRED 0x55 N N N 1 A Failed Speculative Check Loads

INST_CHKA_LDC_ALAT 0x56 Y Y Y 2 A Advanced Check Loads

INST_FAILED_CHKA_LDC_ALAT 0x57 Y Y Y 1 A Failed Advanced Check Loads

ALAT_CAPACITY_MISS 0x58 Y Y Y 2 A ALAT Entry Replaced

BR_MISPRED_DETAIL 0x5b Y N Y 3 A FE Branch Mispredict Detail

L1I_STRM_PREFETCHES 0x5f Y N N 1 A L1 Instruction Cache line prefetch
requests

Table 4-42. All Performance Monitors Ordered by Code (Sheet 2 of 7)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc

T
y
p
e

Description
Reference Manual for Software Development and Optimization 103

Performance Monitor Events
L1I_RAB_FULL 0x60 N N N 1 C Is RAB full?

BE_BR_MISPRED_DETAIL 0x61 Y N Y 1 A BE branch misprediction detail

ENCBR_MISPRED_DETAIL 0x63 Y N Y 3 A Number of encoded branches
retired

L1I_RAB_ALMOST_FULL 0x64 N N N 1 C Is RAB almost full?

L1I_FETCH_RAB_HIT 0x65 Y N N 1 A Instruction fetch hitting in RAB

L1I_FETCH_ISB_HIT 0x66 Y N N 1 A “Just-in-time” instruction fetch hitting
in and being bypassed from ISB

L1I_PREFETCH_STALL 0x67 N N N 1 A Why prefetch pipeline is stalled?

BR_MISPRED_DETAIL2 0x68 Y N Y 2 A FE Branch Mispredict Detail
(Unknown path component)

L1I_PVAB_OVERFLOW 0x69 N N N 1 A PVAB overflow

BR_PATH_PRED2 0x6a Y N Y 2 A FE Branch Path Prediction Detail
(Unknown prediction component)

FE_LOST_BW 0x70 N N N 2 A Invalid bundles at the entrance to IB

FE_BUBBLE 0x71 N N N 1 A Bubbles seen by FE

BE_LOST_BW_DUE_TO_FE 0x72 N N N 2 A Invalid bundles if BE not stalled for
other reasons

IDEAL_BE_LOST_BW_DUE_TO_FE 0x73 N N N 2 A Invalid bundles at the exit from IB

L2I_READS 0x78 Y N Y 1 F L2I Cachebale Reads

L2I_UC_READS 0x79 Y N Y 1 F L2I uncacheable reads

L2I_VICTIMIZATIONS 0x7a Y N Y 1 F L2I victimizations

L2I_RECIRCULATES 0x7b Y N Y 1 F L2I recirculates

L2I_L3_REJECTS 0x7c Y N Y 1 F L3 rejects

L2I_HIT_CONFLICTS 0x7d Y N Y 1 F L2I hit conflicts

L2I_SPEC_ABORTS 0x7e Y N Y 1 F L2I speculative aborts

L2I_SNOOP_HITS 0x7f Y N Y 1 C L2I snoop hits

BUS_RD_HIT 0x80 N N N 1 S Bus Read Hit Clean Non-local
Cache Transactions

BUS_RD_HITM 0x81 N N N 1 S Bus Read Hit Modified Non-local
Cache Transactions

BUS_RD_INVAL_HITM 0x82 N N N 1 S Bus BIL Transaction Results in
HITM

BUS_RD_INVAL_ALL_HITM 0x83 N N N 1 S Bus BIL or BRIL Transaction
Results in HITM

BUS_HITM 0x84 N N N 1 S Bus Hit Modified Line Transactions

BUS_ALL 0x87 N N N 1 S Bus Transactions

BUS_DATA_CYCLE 0x88 N N N 1 C Valid data cycle on the Bus

MEM_READ_CURRENT 0x89 N N N 1 C Current Mem Read Transactions On
Bus

BUS_MEMORY 0x8a N N N 1 S Bus Memory Transactions

Table 4-42. All Performance Monitors Ordered by Code (Sheet 3 of 7)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc

T
y
p
e

Description
104 Reference Manual for Software Development and Optimization

Performance Monitor Events
BUS_MEM_READ 0x8b N N N 1 S Full Cache line D/I memory RD, RD
invalidate, and BRIL

BUS_RD_DATA 0x8c N N N 1 S Bus Read Data Transactions

BUS_RD_PRTL 0x8d N N N 1 S Bus Read Partial Transactions

SI_CYCLES 0x8e N N N 1 C SI clock cycles

BUS_SNOOP_STALL_CYCLES 0x8f N N N 1 F Bus Snoop Stall Cycles (from any
agent)

BUS_IO 0x90 N N N 1 S IA-32 Compatible IO Bus
Transactions

BUS_RD_IO 0x91 N N N 1 S IA-32 Compatible IO Read
Transactions

BUS_WR_WB 0x92 N N N 1 S Bus Write Back Transactions

BUS_B2B_DATA_CYCLES 0x93 N N N 1 C Back-to-back bursts of data

SI_IOQ_LIVE_REQ_LO 0x97 N N N 7 C Inorder Bus Queue Requests (three
least-significant-bits of the 4-bit
outstanding IOQ request count)

SI_IOQ_LIVE_REQ_HI 0x98 N N N 1 C Inorder Bus Queue Requests (
most-significant-bit of the 4-bit
outstanding IOQ request count)

SI_L3T_TRACE_CACHE 0x9d N N N n/a F SI PMU wires are used for trace
cache data.

SI_RQ_INSERTS 0x9e N N N 2 S SI request queue inserts

SI_RQ_LIVE_REQ_LO 0x9f N N N 7 C SI request queue live requests
(least-significant three bits)

SI_RQ_LIVE_REQ_HI 0xa0 N N N 1 C SI request queue live requests
(most-significant bit)

SI_WRITEQ_INSERTS 0xa1 N N N 2 S SI write queue inserts

SI_WRITEQ_LIVE_REQ_LO 0xa2 N N N 7 C SI write queue live requests
(least-significant three bits)

SI_WRITEQ_LIVE_REQ_HI 0xa3 N N N 1 C SI write queue live requests
(most-significant bit)

SI_WAQ_COLLISIONS 0xa4 N N N 1 C SI write address queue collisions
(incoming FSB snoop collides with
an entry in WAQ)

SI_CCQ_INSERTS 0xa5 N N N 2 S SI clean castout queue inserts

SI_CCQ_LIVE_REQ_LO 0xa6 N N N 7 C SI clean castout queue live requests
(least-significant three bits)

SI_CCQ_LIVE_REQ_HI 0xa7 N N N 1 C SI clean castout queue live requests
(most-significant bit)

SI_CCQ_COLLISIONS 0xa8 N N N 1 C SI clean castout queue collisions
(incoming FSB snoop collides with
an entry in CCQ)

SI_IOQ_COLLISIONS 0xaa N N N 1 C SI inorder queue collisions
(outgoing transaction collides with
an entry in IOQ)

Table 4-42. All Performance Monitors Ordered by Code (Sheet 4 of 7)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc

T
y
p
e

Description
Reference Manual for Software Development and Optimization 105

Performance Monitor Events
SI_SCB_INSERTS 0xab N N N 1 C SI snoop coalescing buffer inserts

SI_SCB_LIVE_REQ_LO 0xac N N N 7 C SI snoop coalescing buffer live
requests (least-significant three bits)

SI_SCB_LIVE_REQ_HI 0xad N N N 1 C SI snoop coalescing buffer live
requests (most-significant bit)

SI_SCB_SIGNOFFS 0xae N N N 1 C SI snoop coalescing buffer
coherency signoffs

SI_WDQ_ECC_ERRORS 0xaf N N N 1 C SI write data queue ECC errors

L2D_INSERT_MISSES 0xb0 N N N 4 F Count Number of Times an Inserting
Data Request Missed in the L2D.

L2D_INSERT_HITS 0xb1 N N N 4 F Count Number of Times an Inserting
Data Request Hit in the L2D.

ER_MEM_READ_OUT_HI 0xb4 N N N 2 F Outstanding memory RD
transactions

ER_MEM_READ_OUT_LO 0xb5 N N N 7 F Outstanding memory RD
transactions

ER_SNOOPQ_REQ_HI 0xb6 N N N 1 C ER Snoop Queue Requests (most
significant bit of 4-bit count)

ER_SNOOPQ_REQ_LO 0xb7 N N N 7 C ER Snoop Queue Requests (least
sifnificant three bits of 4-bit count)

ER_BRQ_LIVE_REQ_HI 0xb8 N N N 2 C BRQ Live Requests (two
most-significant-bit of the 5-bit
outstanding BRQ request count)

ER_BRQ_LIVE_REQ_LO 0xb9 N N N 7 C BRQ Live Requests (three
least-significant-bit of the 5-bit
outstanding BRQ request count)

ER_BRQ_REQ_INSERTED 0xba N N N 1 F BRQ Requests Inserted

ER_BKSNP_ME_ACCEPTED 0xbb N N N 1 C BacksnoopMe Requests accepted
into the BRQ from the L2d (used by
the L2d to get itself out of potential
forward progress situations)

ER_REJECT_ALL_L1_REQ 0xbc N N N 1 C Number of cycles in which the BRQ
was rejecting all L1i/L1d requests
(for the “Big Hammer” forward
progress logic)

ER_REJECT_ALL_L1D_REQ 0xbd N N N 1 C Number of cycles in which the BRQ
was rejecting all L1d requests (for
L1d/L1i forward progress)

ER_REJECT_ALL_L1I_REQ 0xbe N N N 1 C Number of cycles in which the BRQ
was rejecting all L1i requests (for
L1d/L1i forward progress)

L1DTLB_TRANSFER 0xc0 Y Y Y 1 A L1DTLB misses that hit in the
L2DTLB for accesses counted in
L1D_READS

L2DTLB_MISSES 0xc1 Y Y Y 4 A L2DTLB Misses

L1D_READS_SET0 0xc2 Y Y Y 2 A L1 Data Cache Reads

Table 4-42. All Performance Monitors Ordered by Code (Sheet 5 of 7)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc

T
y
p
e

Description
106 Reference Manual for Software Development and Optimization

Performance Monitor Events
DATA_REFERENCES_SET0 0xc3 Y Y Y 4 A Data memory references issued to
memory pipeline

L1D_READS_SET1 0xc4 Y Y Y 2 A L1 Data Cache Reads

DATA_REFERENCES_SET1 0xc5 Y Y Y 4 A Data memory references issued to
memory pipeline

DATA_DEBUG_REGISTER_MATCH
ES

0xc6 Y Y Y 1 A Data debug register matches data
address of memory reference

L1D_READ_MISSES 0xc7 Y Y Y 2 A L1 Data Cache Read Misses

DATA_EAR_EVENTS 0xc8 Y Y Y 1 F L1 Data Cache EAR Events

DTLB_INSERTS_HPW 0xc9 Y Y Y 4 F Hardware Page Walker inserts to
DTLB

BE_L1D_FPU_BUBBLE 0xca N N N 1 A Full pipe bubbles in main pipe due
to FP or L1 dcache

L2D_MISSES 0xcb Y Y Y 1 An L2D miss has been issued to the
L3, does not include secondary
misses.

LOADS_RETIRED 0xcd Y Y Y 4 A Retired Loads

MISALIGNED_LOADS_RETIRED 0xce Y Y Y 4 A Retired Misaligned Load
Instructions

UC_LOADS_RETIRED 0xcf Y Y Y 4 A Retired Uncacheable Loads

UC_STORES_RETIRED 0xd0 Y Y Y 2 A Retired Uncacheable Stores

STORES_RETIRED 0xd1 Y Y Y 2 A Retired Stores

MISALIGNED_STORES_RETIRED 0xd2 Y Y Y 2 A Retired Misaligned Store
Instructions

LOADS_RETIRED_INTG 0xd8 Y Y Y 2 A Integer Loads retired

SPEC_LOADS_NATTED 0xd9 Y Y Y 2 A Speculative loads NAT’d

L3_INSERTS 0xda Y Y Y 1 F L3 Inserts (allocations)

L3_REFERENCES 0xdb Y Y Y 1 F L3 References

L3_MISSES 0xdc Y Y Y 1 F L3 Misses

L3_READS 0xdd Y Y Y 1 F L3 Reads

L3_WRITES 0xde Y Y Y 1 F L3 Writes

L3_LINES_REPLACED 0xdf N N N 1 F L3 Cache Lines Replaced

L2D_OZQ_CANCELS0 0xe0 Y Y Y 4 F L2D OZQ cancels (Set 0)

L2D_OZQ_CANCELS1 0xe2 Y Y Y 4 F L2D OZQ cancels (Set 1)

L2D_OZQ_FULL 0xe1
0xe3

N N N 1 F L2D OZQ is full

L2D_BYPASS 0xe4 Y Y Y 4 F Count bypasses

L2D_OZQ_RELEASE 0xe5 N N N 1 F Clocks with release ordering
attribute existed in L2D OZQ

L2D_REFERENCES 0xe6 Y Y Y 4 F Data read/write access to L2D

L2D_L3ACCESS_CANCEL 0xe8 Y Y Y 1 F Canceled L3 accesses

Table 4-42. All Performance Monitors Ordered by Code (Sheet 6 of 7)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc

T
y
p
e

Description
Reference Manual for Software Development and Optimization 107

Performance Monitor Events
4.15 Performance Monitor Event List
This section enumerates Montecito processor performance monitoring events.

NOTE: Events that can be constrained by an Instruction Address Range can only be constrained by
IBRP0 unless otherwise noted.

ALAT_CAPACITY_MISS
• Title: ALAT Entry Replaced
• Category: Instruction Execution IAR/DAR/OPC: Y/Y/Y
• Event Code: 0x58, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Provides information on the number of times an advanced load (ld.a, ld.as,
ldfp.a or ldfp.as) or missing ld.c.nc displaced a valid entry in the ALAT which did not
have the same register id or replaced the last one to two invalid entries.

L2D_OZDB_FULL 0xe9 N N N 1 F L2D OZ data buffer is full

L2D_FORCE_RECIRC 0xea Y Y Y 4 F Forced recirculates

L2D_ISSUED_RECIRC_OZQ_ACC 0xeb Y Y Y 1 F Counts number of attempted OZQ
recirculates back to L1D

L2D_BAD_LINES_SELECTED 0xec Y Y Y 4 F Valid line replaced when invalid line
is available

L2D_STORE_HIT_SHARED 0xed Y Y Y 2 F Store hit a shared line

TAGGED_L2D_RETURN_PORT 0xee Y Y Y 1 F Tagged L2D Return Ports 0-3

L2D_OZQ_ACQUIRE 0xef N N N 1 F Clocks with acquire ordering
attribute existed in L2D OZQ

L2D_OPS_ISSUED 0xf0 Y Y Y 4 F Different operations issued by L2D

L2D_FILLB_FULL 0xf1 N N N 1 F L2D Fill buffer is full

L2D_FILL_MESI_STATE 0xf2 Y Y Y 1 F MESI state of L2D fills

L2D_VICTIMB_FULL 0xf3 N N N 1 F L2D victim buffer is full

Table 4-42. All Performance Monitors Ordered by Code (Sheet 7 of 7)

Symbol Name Event
Code

I
A
R

D
A
R

O
P
C

Max
Inc/Cyc

T
y
p
e

Description

Table 4-43. Unit Masks for ALAT_CAPACITY_MISS

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

INT bxx01 only integer instructions

FP bxx10 only floating-point instructions

ALL bxx11 both integer and floating-point instructions
108 Reference Manual for Software Development and Optimization

Performance Monitor Events
BACK_END_BUBBLE
• Title: Full Pipe Bubbles in Main Pipe
• Category: Stall Events IAR/DAR/OPC: N/N/N
• Event Code: 0x00, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of full-pipe bubbles in the main pipe stalled due to any of 5 pos-

sible events (FPU/L1D, RSE, EXE, branch/exception or the front-end). One event unit mask fur-
ther constrains this event and allows for some details in order to facilitate collecting all
information with four counters.

• NOTE: During a thread switch, a banked counter will encounter a single “dead” cycle before
being placed into the background with the thread it belongs to. If monitored in a banked counter,
and this event occurs during that “dead” cycle, the event will be dropped. For this reason, moni-
toring a .all version of this event may not quite add to the component .me’s.

BE_BR_MISPRED_DETAIL
• Title: Back-end Branch Misprediction Detail
• Category: Branch Events IAR/DAR/OPC: Y/N/Y
• Event Code: 0x61, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of branches retired based on the prediction result, Back-end

mispredictions of stg, rot, or pfs. These predictions are per bundle rather than per branch.
• NOTE: These events are counted only if there are no path mispredictions associated with

branches because path misprediction guarantees stg/rot/pfs misprediction.

Table 4-44. Unit Masks for BACK_END_BUBBLE

Extension PMC.umask
[19:16] Description

ALL bxx00 Front-end, RSE, EXE, FPU/L1D stall or a pipeline flush due
to an exception/branch misprediction

FE bxx01 front-end

L1D_FPU_RSE bxx10

--- bxx11 (* nothing will be counted *)

Table 4-45. Unit Masks for BE_BR_MISPREDICT_DETAIL

Extension PMC.umask
[19:16] Description

ANY bxx00 any back-end mispredictions

STG bxx01 only back-end stage mispredictions

ROT bxx10 only back-end rotate mispredictions

PFS bxx11 only back-end pfs mispredictions for taken branches
Reference Manual for Software Development and Optimization 109

Performance Monitor Events
BE_EXE_BUBBLE
• Title: Full Pipe Bubbles in Main Pipe due to Execution Unit Stalls
• Category: Stall Events IAR/DAR/OPC: N/N/N
• Event Code: 0x02, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of full-pipe bubbles in the main pipe due to stalls caused by the

Execution Unit.
• NOTE: The different causes for this event are not prioritized because there is no need to do so

(causes are independent and several of them fire at the same time, they all should be counted).

BE_FLUSH_BUBBLE
• Title: Full Pipe Bubbles in Main Pipe due to Flushes.
• Category: Stall Events IAR/DAR/OPC: N/N/N
• Event Code: 0x04, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of full-pipe bubbles in the main pipe due to flushes.
• NOTE: XPN is higher priority than BRU. During a thread switch, a banked counter will

encounter a single “dead” cycle before being placed into the background with the thread it
belongs to. If monitored in a banked counter, and this event occurs during that “dead” cycle, the
event will be dropped. For this reason, monitoring a .all version of this event may not quite add
to the component .me’s.

Table 4-46. Unit Masks for BE_EXE_BUBBLE

Extension PMC.umask
[19:16] Description

ALL b0000 was stalled by exe

GRALL b0001 Back-end was stalled by exe due to GR/GR or GR/load
dependency

FRALL b0010 Back-end was stalled by exe due to FR/FR or FR/load
dependency

PR b0011 Back-end was stalled by exe due to PR dependency

ARCR b0100 Back-end was stalled by exe due to AR or CR dependency

GRGR b0101 Back-end was stalled by exe due to GR/GR dependency

CANCEL b0110 Back-end was stalled by exe due to a canceled load

BANK_SWITCH b0111 Back-end was stalled by exe due to bank switching.

ARCR_PR_CANCEL_BANK b1000 ARCR, PR, CANCEL or BANK_SWITCH

--- b1001-b1111 (* nothing will be counted *)

Table 4-47. Unit Masks for BE_FLUSH_BUBBLE

Extension PMC.umask
[19:16] Description

ALL bxx00 Back-end was stalled due to either an exception/interruption
or branch misprediction flush

BRU bxx01 Back-end was stalled due to a branch misprediction flush
110 Reference Manual for Software Development and Optimization

Performance Monitor Events
BE_L1D_FPU_BUBBLE
• Title: Full Pipe Bubbles in Main Pipe due to FP or L1D Cache
• Category: Stall Events/L1D Cache Set 2 IAR/DAR/OPC: N/N/N
• Event Code: 0xca, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of full-pipe bubbles in the main pipe due to stalls caused by

either floating-point unit or L1D cache.
• NOTE: This is a restricted set 2 L1D Cache event. In order to measure this event, one of the

events in this set must be measured by PMD5. The different causes for this event are not priori-
tized because there is no need to do so (causes are independent and several of them fire at the
same time, they all should be counted).

XPN bxx10 Back-end was stalled due to an exception/interruption flush
This would include flush cycles for thread switch.

--- bxx11 (* nothing will be counted *)

Table 4-47. Unit Masks for BE_FLUSH_BUBBLE

Extension PMC.umask
[19:16] Description

Table 4-48. Unit Masks for BE_L1D_FPU_BUBBLE (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

ALL b0000 Back-end was stalled by L1D or FPU

FPU b0001 Back-end was stalled by FPU.

L1D b0010 Back-end was stalled by L1D. This includes all stalls caused
by the L1 pipeline (created in the L1D stage of the L1
pipeline which corresponds to the DET stage of the main
pipe).

L1D_FULLSTBUF b0011 Back-end was stalled by L1D due to store buffer being full

L1D_PIPE_RECIRC b0100 Back-end was stalled by L1D due a recirculate

L1D_HPW b0101 Back-end was stalled by L1D due to Hardware Page Walker

--- b0110 (* count is undefined *)

L1D_FILLCONF b0111 Back-end was stalled by L1D due a store in conflict with a
returning fill.

L1D_AR_CR b1000 Back-end was stalled by L1D due to ar/cr requiring a stall

L1D_L2BPRESS b1001 Back-end was stalled by L1D due to L2D Back Pressure

L1D_TLB b1010 Back-end was stalled by L1D due to L2DTLB to L1DTLB
transfer

L1D_LDCONF b1011 Back-end was stalled by L1D due to architectural ordering
conflict

L1D_LDCHK b1100 Back-end was stalled by L1D due to load check ordering
conflict.

L1D_NAT b1101 Back-end was stalled by L1D due to L1D data return
needing recirculated NaT generation.
Reference Manual for Software Development and Optimization 111

Performance Monitor Events
BE_LOST_BW_DUE_TO_FE
• Title: Invalid Bundles if BE Not Stalled for Other Reasons.
• Category: Stall Events IAR/DAR/OPC: N/N/N
• Event Code: 0x72, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of invalid bundles at the exit from Instruction Buffer only if

Back-end is not stalled for other reasons.
• NOTE: Causes for lost bandwidth are prioritized in the following order from high to low for

this event: FEFLUSH, TLBMISS, IMISS, PLP, BR_ILOCK, BRQ, BI, FILL_RECIRC, BUB-
BLE, IBFULL, UNREACHED. The prioritization implies that when several stall conditions
exist at the same time, only the highest priority one will be counted. There are two cases where a
bundle is considered “unreachable”. When bundle 0 contains a taken branch or bundle 0 is
invalid but has IP[4] set to 1, bundle 1 will not be reached.

L1D_STBUFRECIR b1110 Back-end was stalled by L1D due to store buffer cancel
needing recirculate.

L1D_NATCONF b1111 Back-end was stalled by L1D due to ld8.fill conflict with
st8.spill not written to unat.

Table 4-48. Unit Masks for BE_L1D_FPU_BUBBLE (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-49. Unit Masks for BE_LOST_BW_DUE_TO_FE

Extension PMC.umask
[19:16] Description

ALL b0000 count regardless of cause

FEFLUSH b0001 only if caused by a front-end flush

--- b0010 (* illegal selection *)

--- b0011 (* illegal selection *)

UNREACHED b0100 only if caused by unreachable bundle

IBFULL b0101 (* meaningless for this event *)

IMISS b0110 only if caused by instruction cache miss stall

TLBMISS b0111 only if caused by TLB stall

FILL_RECIRC b1000 only if caused by a recirculate for a cache line fill operation

BI b1001 only if caused by branch initialization stall

BRQ b1010 only if caused by branch retirement queue stall

PLP b1011 only if caused by perfect loop prediction stall

BR_ILOCK b1100 only if caused by branch interlock stall

BUBBLE b1101 only if caused by branch resteer bubble stall

--- b1110-b1111 (* illegal selection *)
112 Reference Manual for Software Development and Optimization

Performance Monitor Events
BE_RSE_BUBBLE
• Title: Full Pipe Bubbles in Main Pipe due to RSE Stalls
• Category: Stall Events IAR/DAR/OPC: N/N/N
• Event Code: 0x01, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of full-pipe bubbles in the main pipe due to stalls caused by the

Register Stack Engine.
• NOTE: AR_DEP has a higher priority than OVERFLOW, UNDERFLOW and LOADRS.

However, this is the only prioritization implemented. In order to count OVERFLOW, UNDER-
FLOW or LOADRS, AR_DEP must be false.

BR_MISPRED_DETAIL
• Title: FE Branch Mispredict Detail
• Category: Branch Events IAR/DAR/OPC: Y/N/Y
• Event Code: 0x5b, Max. Inc/Cyc: 3, MT Capture Type: A
• Definition: Counts the number of branches retired. All 16 values for PMC.umask are valid in

order to provide information based on prediction result (mispredicted path or target address by
front-end), and branch type.

Table 4-50. Unit Masks for BE_RSE_BUBBLE

Extension PMC.umask
[19:16] Description

ALL bx000 Back-end was stalled by RSE

BANK_SWITCH bx001 Back-end was stalled by RSE due to bank switching

AR_DEP bx010 Back-end was stalled by RSE due to AR dependencies

OVERFLOW bx011 Back-end was stalled by RSE due to need to spill

UNDERFLOW bx100 Back-end was stalled by RSE due to need to fill

LOADRS bx101 Back-end was stalled by RSE due to loadrs calculations

--- bx110-bx111 (* nothing will be counted *)

Table 4-51. Unit Masks for BR_MISPRED_DETAIL

Extension PMC.umask
[19:16] Description

ALL.ALL_PRED b0000 All branch types, regardless of prediction result

ALL.CORRECT_PRED b0001 All branch types, correctly predicted branches (outcome and
target)

ALL.WRONG_PATH b0010 All branch types, mispredicted branches due to wrong
branch direction

ALL.WRONG_TARGET b0011 All branch types, mispredicted branches due to wrong target
for taken branches

IPREL.ALL_PRED b0100 Only IP relative branches, regardless of prediction result

IPREL.CORRECT_PRED b0101 Only IP relative branches, correctly predicted branches
(outcome and target)

IPREL.WRONG_PATH b0110 Only IP relative branches, mispredicted branches due to
wrong branch direction
Reference Manual for Software Development and Optimization 113

Performance Monitor Events
BR_MISPRED_DETAIL2
• Title: FE Branch Mispredict Detail (Unknown Path Component)
• Category: Branch Events IAR/DAR/OPC: Y/N/Y
• Event Code: 0x68, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: This event goes with BR_MISPRED_DETAIL event based on prediction result and

branch type
• NOTE: For accurate misprediction counts the following measurement must be taken:

BR_MISPRED_DETAIL.[umask] - BR_MISPRED_DETAIL2.[umask]
By performing this calculation for every umask, one can obtain a true value for the
BR_MISPRED_DETAIL event.

IPREL.WRONG_TARGET b0111 Only IP relative branches, mispredicted branches due to
wrong target for taken branches

RETURN.ALL_PRED b1000 Only return type branches, regardless of prediction result

RETURN.CORRECT_PRED b1001 Only return type branches, correctly predicted branches
(outcome and target)

RETURN.WRONG_PATH b1010 Only return type branches, mispredicted branches due to
wrong branch direction

RETURN.WRONG_TARGET b1011 Only return type branches, mispredicted branches due to
wrong target for taken branches

NRETIND.ALL_PRED b1100 Only non-return indirect branches, regardless of prediction
result

NRETIND.CORRECT_PRED b1101 Only non-return indirect branches, correctly predicted
branches (outcome and target)

NRETIND.WRONG_PATH b1110 Only non-return indirect branches, mispredicted branches
due to wrong branch direction

NRETIND.WRONG_TARGET b1111 Only non-return indirect branches, mispredicted branches
due to wrong target for taken branches

Table 4-51. Unit Masks for BR_MISPRED_DETAIL

Extension PMC.umask
[19:16] Description

Table 4-52. Unit Masks for BR_MISPREDICT_DETAIL2 (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

ALL.ALL_UNKNOWN_PRED b0000 All branch types, branches with unknown path prediction

ALL.UNKNOWN_PATH_COR
RECT_PRED

b0001 All branch types, branches with unknown path prediction
and correctly predicted branch (outcome & target)

ALL.UNKNOWN_PATH_WR
ONG_PATH

b0010 All branch types, branches with unknown path prediction
and wrong branch direction

--- b0011 (* nothing will be counted *)

IPREL.ALL_UNKNOWN_PR
ED

b0100 Only IP relative branches, branches with unknown path
prediction

IPREL.UNKNOWN_PATH_C
ORRECT_PRED

b0101 Only IP relative branches, branches with unknown path
prediction and correctly predicted branch (outcome & target)
114 Reference Manual for Software Development and Optimization

Performance Monitor Events
BR_PATH_PRED
• Title: FE Branch Path Prediction Detail
• Category: Branch Events IAR/DAR/OPC: Y/N/Y
• Event Code: 0x54, Max. Inc/Cyc: 3, MT Capture Type: A
• Definition: Counts the number of branches retired based on branch direction (taken/not taken),

branch predication and branch type. All 16 values for PMC.umask are valid.

IPREL.UNKNOWN_PATH_W
RONG_PATH

b0110 Only IP relative branches, branches with unknown path
prediction and wrong branch direction

--- b0111 (* nothing will be counted *)

RETURN.ALL_UNKNOWN_P
RED

b1000 Only return type branches, branches with unknown path
prediction

RETURN.UNKNOWN_PATH_
CORRECT_PRED

b1001 Only return type branches, branches with unknown path
prediction and correctly predicted branch (outcome & target)

RETURN.UNKNOWN_PATH_
WRONG_PATH

b1010 Only return type branches, branches with unknown path
prediction and wrong branch direction

--- b1011 (* nothing will be counted *)

NRETIND.ALL_UNKNOWN_
PRED

b1100 Only non-return indirect branches, branches with unknown
path prediction

NRETIND.UNKNOWN_PATH
_CORRECT_PRED

b1101 Only non-return indirect branches, branches with unknown
path prediction and correctly predicted branch (outcome &
target)

NRETIND.UNKNOWN_PATH
_WRONG_PATH

b1110 Only non-return indirect branches, branches with unknown
path prediction and wrong branch direction

--- b1111 (* nothing will be counted *)

Table 4-52. Unit Masks for BR_MISPREDICT_DETAIL2 (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-53. Unit Masks for BR_PATH_PRED (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

ALL.MISPRED_NOTTAKEN b0000 All branch types, incorrectly predicted path and not taken
branch

ALL.MISPRED_TAKEN b0001 All branch types, incorrectly predicted path and taken
branch

ALL.OKPRED_NOTTAKEN b0010 All branch types, correctly predicted path and not taken
branch

ALL.OKPRED_TAKEN b0011 All branch types, correctly predicted path and taken branch

IPREL.MISPRED_NOTTAKE
N

b0100 Only IP relative branches, incorrectly predicted path and not
taken branch

IPREL.MISPRED_TAKEN b0101 Only IP relative branches, incorrectly predicted path and
taken branch

IPREL.OKPRED_NOTTAKEN b0110 Only IP relative branches, correctly predicted path and not
taken branch

IPREL.OKPRED_TAKEN b0111 Only IP relative branches, correctly predicted path and
taken branch
Reference Manual for Software Development and Optimization 115

Performance Monitor Events
BR_PATH_PRED2
• Title: FE Branch Path Prediction Detail (Unknown Pred Component)
• Category: Branch Events IAR/DAR/OPC: Y/N/Y
• Event Code: 0x6a, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: This event goes with BR_PATH_PREDICTION event.
• NOTE: When there is more than one branch in a bundle and one is predicted as taken, all the

higher number ports are forced to a predicted not taken mode without actually knowing the their
true prediction.
The true OKPRED_NOTTAKEN predicted path information can be obtained by calculating:
BR_PATH_PRED.[branch type].OKPRED_NOTTAKEN - BR_PATH_PRED2.[branch
type].UNKNOWNPRED_NOTTAKEN using the same “branch type” (ALL, IPREL, RETURN,
NRETIND) specified for both events.
Similarly, the true MISPRED_TAKEN predicted path information can be obtained by calculat-
ing:
BR_PATH_PRED.[branch type].MISPRED_TAKEN - BR_PATH_PRED2.[branch
type].UKNOWNPRED_TAKEN using the same “branch type” (ALL, IPREL, RETURN,
NRETIND) selected for both events.

RETURN.MISPRED_NOTTA
KEN

b1000 Only return type branches, incorrectly predicted path and
not taken branch

RETURN.MISPRED_TAKEN b1001 Only return type branches, incorrectly predicted path and
taken branch

RETURN.OKPRED_NOTTAK
EN

b1010 Only return type branches, correctly predicted path and not
taken branch

RETURN.OKPRED_TAKEN b1011 Only return type branches, correctly predicted path and
taken branch

NRETIND.MISPRED_NOTTA
KEN

b1100 Only non-return indirect branches, incorrectly predicted path
and not taken branch

NRETIND.MISPRED_TAKEN b1101 Only non-return indirect branches, incorrectly predicted path
and taken branch

NRETIND.OKPRED_NOTTA
KEN

b1110 Only non-return indirect branches, correctly predicted path
and not taken branch

NRETIND.OKPRED_TAKEN b1111 Only non-return indirect branches, correctly predicted path
and taken branch

Table 4-53. Unit Masks for BR_PATH_PRED (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-54. Unit Masks for BR_PATH_PRED2 (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

ALL.UNKNOWNPRED_NOT
TAKEN

b00x0 All branch types, unknown predicted path and not taken
branch (which impacts OKPRED_NOTTAKEN)

ALL.UNKNOWNPRED_TAKE
N

b00x1 All branch types, unknown predicted path and taken branch
(which impacts MISPRED_TAKEN)

IPREL.UNKNOWNPRED_NO
TTAKEN

b01x0 Only IP relative branches, unknown predicted path and not
taken branch (which impacts OKPRED_NOTTAKEN)
116 Reference Manual for Software Development and Optimization

Performance Monitor Events
BUS_ALL
• Title: Bus Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x87, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of bus transactions.

BUS_B2B_DATA_CYCLES
• Title: Back to Back Data Cycles on the Bus
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x93, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of BUS Clocks which had valid data cycle driven back-to-back

on the bus.

IPREL.UNKNOWNPRED_TA
KEN

b01x1 Only IP relative branches, unknown predicted path and
taken branch (which impacts MISPRED_TAKEN)

RETURN.UNKNOWNPRED_
NOTTAKEN

b10x0 Only return type branches, unknown predicted path and not
taken branch (which impacts OKPRED_NOTTAKEN)

RETURN.UNKNOWNPRED_
TAKEN

b10x1 Only return type branches, unknown predicted path and
taken branch (which impacts MISPRED_TAKEN)

NRETIND.UNKNOWNPRED_
NOTTAKEN

b11x0 Only non-return indirect branches, unknown predicted path
and not taken branch (which impacts
OKPRED_NOTTAKEN)

NRETIND.UNKNOWNPRED_
TAKEN

b11x1 Only non-return indirect branches, unknown predicted path
and taken branch (which impacts MISPRED_TAKEN)

Table 4-54. Unit Masks for BR_PATH_PRED2 (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-55. Unit Masks for BUS_ALL

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).
Reference Manual for Software Development and Optimization 117

Performance Monitor Events
BUS_DATA_CYCLE
• Title: Valid Data Cycle on the Bus
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x88, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of BUS Clocks which had a valid data cycle on the bus.

BUS_HITM
• Title: Bus Hit Modified Line Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x84, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of transactions with HITM asserted (i.e. transaction was satis-

fied by some other processor's modified line).
• NOTE: This is equivalent to: BUS_RD_INVAL_BST_HITM + BUS_RD_HITM

Table 4-56. Unit Masks for BUS_B2B_DATA_CYCLES

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).

Table 4-57. Unit Masks for BUS_DATA_CYCLE

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).

Table 4-58. Unit Masks for BUS_HITM

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).
118 Reference Manual for Software Development and Optimization

Performance Monitor Events
BUS_IO
• Title: IA-32 Compatible IO Bus Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x90, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of IA-32 I/O transactions.

BUS_MEMORY
• Title: Bus Memory Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x8a, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of bus memory transactions (i.e memory-read-invalidate,

reserved-memory-read, memory-read, and memory-write transactions).

Table 4-59. Unit Masks for BUS_IO

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).

Table 4-60. Unit Masks for BUS_MEMORY

Extension PMC.umask
[19:16] Description

--- b00xx (* nothing will be counted *)

EQ_128BYTE.EITHER b0100 number of full cache line transactions (BRL, BRIL, BWL,
BRC, BCR, BCCL) from either local processor

EQ_128BYTE.IO b0101 number of full cache line transactions (BRL, BRIL, BWL,
BRC, BCR, BCCL) from non-CPU priority agents

EQ_128BYTE.SELF b0110 number of full cache line transactions (BRL, BRIL, BWL,
BRC, BCR, BCCL) from ‘this’ processor

EQ_128BYTE.ANY b0111 number of full cache line transactions (BRL, BRIL, BWL,
BRC, BCR, BCCL) from CPU or non-CPU (all transactions).

LT_128BYTE.EITHER b1000 number of less than full cache line transactions (BRP, BWP,
BIL) from either local processor

LT_128BYTE.IO b1001 number of less than full cache line transactions (BRP, BWP,
BIL) from non-CPU priority agents

LT_128BYTE.SELF b1010 number of less than full cache line transactions (BRP, BWP,
BIL) from ‘this’ processor

LT_128BYTE.ANY b1011 number of less than full cache line transactions (BRP, BWP,
BIL) CPU or non-CPU (all transactions).

ALL.EITHER b1100 All bus transactions from either local processor

ALL.IO b1101 All bus transactions from non-CPU priority agents
Reference Manual for Software Development and Optimization 119

Performance Monitor Events
BUS_MEM_READ
• Title: Full Cache Line D/I Memory RD, RD Invalidate, and BRIL
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x8b, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of full cache-line (128-byte) data/code memory read (BRL),

full cache-line memory read-invalidate (BRIL), and 0-byte memory read-invalidate (BIL) trans-
actions.

ALL.SELF b1110 All bus transactions from ‘this’ local processor

ALL.ANY b1111 All bus transactions from CPU or non-CPU (all
transactions).

Table 4-60. Unit Masks for BUS_MEMORY

Extension PMC.umask
[19:16] Description

Table 4-61. Unit Masks for BUS_MEM_READ

Extension PMC.umask
[19:16] Description

BIL.EITHER b0000 Number of BIL 0-byte memory read invalidate transactions
from either local processor

BIL.IO b0001 Number of BIL 0-byte memory read invalidate transactions
from non-CPU priority agents

BIL.SELF b0010 Number of BIL 0-byte memory read invalidate transactions
from ‘this’ processor

BIL.ANY b0011 Number of BIL 0-byte memory read invalidate transactions
from CPU or non-CPU (all transactions).

BRL.EITHER b0100 Number of full cache line memory read transactions from
either local processor

BRL.IO b0101 Number of full cache line memory read transactions from
non-CPU priority agents

BRL.SELF b0110 Number of full cache line memory read transactions from
‘this’ processor

BRL.ANY b0111 Number of full cache line memory read transactions from
CPU or non-CPU (all transactions).

BRIL.EITHER b1000 Number of full cache line memory read invalidate
transactions from either local processor

BRIL.IO b1001 Number of full cache line memory read invalidate
transactions from non-CPU priority agents

BRIL.SELF b1010 Number of full cache line memory read invalidate
transactions from ‘this’processor

BRIL.ANY b1011 Number of full cache line memory read invalidate
transactions from CPU or non-CPU (all transactions).

ALL.EITHER b1100 All memory read transactions from either local processor

ALL.IO b1101 All memory read transactions from non-CPU priority agents

ALL.SELF b1110 All memory read transactions from ‘this’processor

ALL.ANY b1111 All memory read transactions from CPU or non-CPU (all
transactions).
120 Reference Manual for Software Development and Optimization

Performance Monitor Events
sv

BUS_RD_DATA
• Title: Bus Read Data Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x8c, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of full-cache-line (128-byte) data memory read transactions

(BRL).

BUS_RD_HIT
• Title: Bus Read Hit Clean Non-local Cache Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x80, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of bus reads that hit a clean line in another processor's cache

(implies HIT and BRL).

BUS_RD_HITM
• Title: Bus Read Hit Modified Non-local Cache Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x81, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of bus reads that hit a modified line in another processor's cache

(implies HITM and BRL).

Table 4-62. Unit Masks for BUS_RD_DATA

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).

Table 4-63. Unit Masks for BUS_RD_HIT

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).
Reference Manual for Software Development and Optimization 121

Performance Monitor Events
BUS_RD_INVAL_BST_HITM
• Title: Bus BRIL Transaction Results in HITM
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x83, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of bus read invalidate line transactions (implies BRIL and

HITM) which are satisfied from a remote processor only.

BUS_RD_INVAL_HITM
• Title: Bus BIL Transaction Results in HITM
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x82, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of bus read invalidated line transactions for which HITM was

asserted (implies BIL and HITM) and the transaction was satisfied from another processor's
cache.

Table 4-64. Unit Masks for BUS_RD_HITM

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).

Table 4-65. Unit Masks for BUS_RD_INVAL_BST_HITM

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).
122 Reference Manual for Software Development and Optimization

Performance Monitor Events
BUS_RD_IO
• Title: IA-32 Compatible IO Read Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x91, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of IA-32 I/O read transactions.

BUS_RD_PRTL
• Title: Bus Read Partial Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x8d, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of less-than-full-cache-line (0,8,16,32, and 64 byte) memory

read transactions (BRP).

Table 4-66. Unit Masks for BUS_RD_INVAL_HITM

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).

Table 4-67. Unit Masks for BUS_RD_IO

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).

Table 4-68. Unit Masks for BUS_RD_PRTL

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

IO bxx01 transactions initiated by non-CPU priority agents

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).
Reference Manual for Software Development and Optimization 123

Performance Monitor Events
BUS_SNOOP_STALL_CYCLES
• Title: Bus Snoop Stall Cycles (from any agent)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x8f, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of bus clocks FSB is stalled for snoop.

BUS_WR_WB
• Title: Bus Write Back Transactions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x92, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of write-back memory write transactions (BWL writes due to

M-state line write-backs and coalesced writes).

Table 4-69. Unit Masks for BUS_SNOOP_STALL_CYCLES

Extension PMC.umask
[19:16] Description

EITHER bxx00 transactions initiated by either cpu core

--- bxx01 (* illegal selection *)

SELF bxx10 transactions initiated by ‘this’ cpu core

ANY bxx11 CPU or non-CPU (all transactions).

Table 4-70. Unit Masks for BUS_WR_WB (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

--- b00xx (* nothing will be counted *)

EQ_128BYTE.EITHER b0100 either local processor/Only cache line transactions with
write back or write coalesce attributes will be counted.

EQ_128BYTE.IO b0101 non-CPU priority agents/Only cache line transactions with
write back or write coalesce attributes will be counted.

EQ_128BYTE.SELF b0110 ‘this’ processor/Only cache line transactions with write back
or write coalesce attributes will be counted.

EQ_128BYTE.ANY b0111 CPU or non-CPU (all transactions)./Only cache line
transactions with write back or write coalesce attributes will
be counted.

CCASTOUT.EITHER b1000 either local processor/Only 0-byte transactions with write
back attribute (clean cast outs) will be counted

--- b1001 (* illegal selection *)

CCASTOUT.SELF b1010 ‘this’ processor/Only 0-byte transactions with write back
attribute (clean cast outs) will be counted

CCASTOUT.ANY b1011 CPU or non-CPU (all transactions)/Only 0-byte transactions
with write back attribute (clean cast outs) will be counted

ALL.EITHER b1100 either local processor

ALL.IO b1101 non-CPU priority agents
124 Reference Manual for Software Development and Optimization

Performance Monitor Events
CPU_CPL_CHANGES
• Title: Privilege Level Changes
• Category: System Events IAR/DAR/OPC: N/N/N
• Event Code: 0x13, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of privilege level changes.

CPU_OP_CYCLES
• Title: CPU Operating Cycles
• Category: Basic Events IAR/DAR/OPC: Y/N/Y
• Event Code: 0x12, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of core clock cycles. This event does not count cycles when the

thread is in low power mode. This event has a umask which allows counting only the cycles
when processing qualified instructions. Instruction can be qualified using regular address range
checking and/or opcode match qualification. Further, it is necessary to program channel 1 to
count all instructions without any qualifications.

• NOTE: Although CPU_OP_CYCLES{all} is supported and expected to increment as long as
either of the threads are executing, CPU_OP_CYCLES{all} will not increment when the thread
the counter register belongs to enters a low-power halt if the other thread is not also in a
low-power halt state. When threads are expected to enter a low-power halt state, it is expected
that software will add the CPU_OP_CYCLES{me} for each thread in order to calculate
CPU_OP_CYCLES{all}. If CPU_OP_CYCLES are being captured in a banked counter and .all
is enabled, a single cycle will be dropped from the count each time a thread switch occurs. It is
possible to compensate by monitoring THREAD_SWITCH_EVENTS.ALL and adding the two
counts together.

ALL.SELF b1110 ‘this’ processor

ALL.ANY b1111 CPU or non-CPU (all transactions).

Table 4-70. Unit Masks for BUS_WR_WB (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-71. Unit Masks for CPU_CPL_CHANGES

Extension PMC.umask
[19:16] Description

--- b0000 (* nothing will be counted *)

LVL0 b0001 All changes to/from privilege level 0 are counted

LVL1 b0010 All changes to/from privilege level 1 are counted

LVL2 b0100 All changes to/from privilege level 2 are counted

LVL3 b1000 All changes to/from privilege level 3 are counted

ALL b1111 All changes in cpl counted
Reference Manual for Software Development and Optimization 125

Performance Monitor Events
CPU_OP_CYCLES_HALTED
• Title: CPU Operating Cycles Halted
• Category: System Event IAR/DAR/OPC: N/N/N
• Event Code: 0x18, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of core clock cycles the thread is BAhalted.
• NOTE: Only PMC/D10 is capable of monitoring this event.

DATA_DEBUG_REGISTER_FAULT
• Title: Fault Due to Data Debug Reg. Match to Load/Store Instruction
• Category: System Events IAR/DAR/OPC: N/N/N
• Event Code: 0x52, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of times we take a fault due to one of data debug registers match-

ing a load or store instruction.

DATA_DEBUG_REGISTER_MATCHES
• Title: Data Debug Register Matches Data Address of Memory References.
• Category: System Events IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xc6, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of times the data debug register matches the data address of a

memory reference. This is the OR function the 4 DBR matches. Registers DBR0-7, PSR, DCR,
PMC13 affect this event. It does not include commits which means that it might have noise.

DATA_EAR_EVENTS
• Title: L1 Data Cache EAR Events
• Category: L1 Data Cache IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xc8, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of L1 Data Cache or L1DTLB or ALAT events captured by EAR

Table 4-72. Unit Masks for CPU_OP_CYCLES

Extension PMC.umask
[16] Description

ALL bxxx0 All CPU cycles counted

QUAL bxxx1 Qualified cycles only
126 Reference Manual for Software Development and Optimization

Performance Monitor Events
DATA_REFERENCES_SET0
• Title: Data Memory References Issued to Memory Pipeline
• Category: L1 Data Cache/L1D Cache Set 0 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xc3, Max. Inc/Cyc: 4, MT Capture Type: A
• Definition: Counts the number of data memory references issued into memory pipeline

(includes check loads, uncacheable accesses, RSE operations, semaphores, and floating-point
memory references). The count includes wrong path operations but excludes predicated off oper-
ations. This event does not include VHPT memory references.

• NOTE: This is a restricted set 0 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

DATA_REFERENCES_SET1
• Title: Data Memory References Issued to Memory Pipeline
• Category: L1 Data Cache/L1D Cache Set 1 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xc5, Max. Inc/Cyc: 4, MT Capture Type: A
• Definition: Counts the number of data memory references issued into memory pipeline

(includes check loads, uncacheable accesses, RSE operations, semaphores, and floating-point
memory references). The count includes wrong path operations but excludes predicated off oper-
ations. This event does not include VHPT memory references.

• NOTE: This is a restricted set 1 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

DISP_STALLED
• Title: Number of Cycles Dispersal Stalled
• Category: Instruction Dispersal Events IAR/DAR/OPC: N/N/N
• Event Code: 0x49, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of cycles dispersal was stalled due to flushes or back-end pipe-

line stalls.

DTLB_INSERTS_HPW
• Title: Hardware Page Walker Inserts to DTLB
• Category: TLB IAR/DAR/OPC: N/N/N
• Event Code: 0xc9, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of VHPT entries inserted into DTLB by Hardware Page Walker.
• NOTE: This will include misses which the DTLB did not squash even though the instructions

causing the miss did not get to retirement.

ENCBR_MISPRED_DETAIL
• Title: Number of Encoded Branches Retired
• Category: Branch Events IAR/DAR/OPC: Y/N/Y
• Event Code: 0x63, Max. Inc/Cyc: 3, MT Capture Type: A
• Definition: Counts the number of branches retired only if there is a branch on port B0 (i.e.

encoded branch).
Reference Manual for Software Development and Optimization 127

Performance Monitor Events
ER_BKSNP_ME_ACCEPTED
• Title: Backsnoop Me Accepted
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xbb, Max. Inc/Cyc: 2, MT Capture Type: C
• Definition: Counts the number of BacksnoopMe requests accepted into the BRQ from the L2d

(used by the L2d to get itself out of potential forward progress situations).
• NOTE: The .all field is ignored for this event. The event will count as if .all is set.

Table 4-73. Unit Masks for ENCBR_MISPRED_DETAIL

Extension PMC.umask
[19:16] Description

ALL.ALL_PRED b0000 all encoded branches, regardless of prediction result

ALL.CORRECT_PRED b0001 all encoded branches, correctly predicted branches
(outcome and target)

ALL.WRONG_PATH b0010 all encoded branches, mispredicted branches due to wrong
branch direction

ALL.WRONG_TARGET b0011 all encoded branches, mispredicted branches due to wrong
target for taken branches

--- b0100 (* nothing will be counted *)

--- b0101 (* nothing will be counted *)

--- b0110 (* nothing will be counted *)

--- b0111 (* nothing will be counted *)

OVERSUB.ALL_PRED b1000 only those which cause oversubscription, regardless of
prediction result

OVERSUB.CORRECT_PRE
D

b1001 only those which cause oversubscription, correctly predicted
branches (outcome and target)

OVERSUB.WRONG_PATH b1010 only those which cause oversubscription, mispredicted
branches due to wrong branch direction

OVERSUB.WRONG_TARGE
T

b1011 only those which cause oversubscription mispredicted
branches due to wrong target for taken branches

ALL2.ALL_PRED b1100 all encoded branches, regardless of prediction result

ALL2.CORRECT_PRED b1101 all encoded branches, correctly predicted branches
(outcome and target)

ALL2.WRONG_PATH b1110 all encoded branches, mispredicted branches due to wrong
branch direction

ALL2.WRONG_TARGET b1111 all encoded branches, mispredicted branches due to wrong
target for taken branches
128 Reference Manual for Software Development and Optimization

Performance Monitor Events
ER_BRQ_LIVE_REQ_HI
• Title: BRQ Live Requests (upper two bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xb8, Max. Inc/Cyc: 2, MT Capture Type: C
• Definition: Counts the number of live read requests in BRQ. The Montecito processor can have

a total of 16 per cycle. The upper 2 bits are stored in this counter (bits 4:3).
• NOTE: If a read request has an L2d victim, it is also entered in the BRQ (as writeback). This

event will count 1 as long as a read or its victim is in BRQ (net effect is that due to an L2d vic-
tim, the life of read in BRQ is extended). The .all field is ignored for this event. The event will
count as if .all is set.

ER_BRQ_LIVE_REQ_LO
• Title: BRQ Live Requests (lower three bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xb9, Max. Inc/Cyc: 7, MT Capture Type: C
• Definition: Counts the number of live read requests in BRQ. The Montecito processor can have

a total of 16 per cycle. The lower 3 bits are stored in this counter (bits 2:0).
• NOTE: If a read request has an L2d victim, it is also entered in the BRQ (as writeback). This

event will count 1 as long as a read or its victim is in BRQ (net effect is that due to an L2d vic-
tim, the life of read in BRQ is extended). The .all field is ignored for this event. The event will
count as if .all is set.

ER_BRQ_REQ_INSERTED
• Title: BRQ Requests Inserted
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xba, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of requests which are inserted into BRQ.
• NOTE: Entries made into BRQ due to L2d victims (caused by read, fc, cc) are not counted.

ER_MEM_READ_OUT_HI
• Title: Outstanding Memory Read Transactions (upper 2 bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xb4, Max. Inc/Cyc: 2, MT Capture Type: F
• Definition: Counts the number of memory read transactions outstanding. The Montecito pro-

cessor can have a total of 16 of this event per cycle. The upper two bits are stored in this counter.
For the purpose of this event, a memory read access is assumed outstanding from the time a read
request is issued on the FSB until the first chunk of read data is returned to L2D.

• NOTE: Uncacheables (or anything else which doesn't access the L3) are not tracked. This is
intended to be used along with BUS_MEM_READ for average system memory latency
Reference Manual for Software Development and Optimization 129

Performance Monitor Events
ER_MEM_READ_OUT_LO
• Title: Outstanding Memory Read Transactions (lower 3 bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xb5, Max. Inc/Cyc: 7, MT Capture Type: F
• Definition: Counts the number of memory read transactions outstanding. The Itanium 2 pro-

cessor can have a total of 16 of this event per cycle. The lower three bits are stored in this
counter. For the purpose of this event, a memory read access is assumed outstanding from the
time a read request is issued on the FSB until the first chunk of read data is returned to L2D.

• NOTE: Uncacheables (or anything else which doesn't access the L3) are not tracked. This is
intended to be used along with BUS_MEM_READ for average system memory latency

ER_REJECT_ALL_L1_REQ
• Title: Reject All L1 Requests
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xbc, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Number of cycles in which the BRQ was rejecting all L1i/L1d requests (for the

“Big Hammer” forward progress logic).
• NOTE: The .all field is ignored for this event. The event will count as if .all is set.

ER_REJECT_ALL_L1D_REQ
• Title: Reject All L1D Requests
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xbd, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Number of cycles in which the BRQ was rejecting all L1D requests (for L1D/L1I

forward progress).
• NOTE: The .all field is ignored for this event. The event will count as if .all is set.

ER_REJECT_ALL_L1I_REQ
• Title: Reject All L1I Requests
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xbe, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Number of cycles in which the BRQ was rejecting all L1I requests (for L1D/L1I

forward progress).
• NOTE: The .all field is ignored for this event. The event will count as if .all is set.

ER_SNOOPQ_REQ_HI
• Title: Outstanding Snoops (upper bit)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xb6, Max. Inc/Cyc: 2, MT Capture Type: C
• Definition: Counts the number of snoops outstanding. The Montecito processor can have a

total of 8 of this event per cycle. The upper bit is stored in this counter.
• NOTE: The .all field is ignored for this event. The event will count as if .all is set.
130 Reference Manual for Software Development and Optimization

Performance Monitor Events
ER_SNOOPQ_REQ_LO
• Title: Outstanding Snoops (lower 3 bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xb7, Max. Inc/Cyc: 7, MT Capture Type: C
• Definition: Counts the number of memory read transactions outstanding. The Montecito pro-

cessor can have a total of 8 of this event per cycle. The lower three bits are stored in this counter.
• NOTE: The .all field is ignored for this event. The event will count as if .all is set.

ETB_EVENT
• Title: Execution Trace Buffer Event Captured
• Category: Branch Events IAR/DAR/OPC: Y/N/Y
• Event Code: 0x11, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of entries captured in Execution Trace Buffer. Please see

Section 3.3.10.1.1 and Section 3.3.10.2 for more information. Entries captured are subject to the
constraints programmed to PMC39.

FE_BUBBLE
• Title: Bubbles Seen by FE
• Category: Stall Events IAR/DAR/OPC: N/N/N
• Event Code: 0x71, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of bubbles seen by front-end. This event is another way of look-

ing at the FE_LOST_BW event.
Causes for stall are prioritized in the following order from high to low for this event: FEFLUSH,
TLBMISS, IMISS, BRANCH, FILL_RECIRC, BUBBLE, IBFULL. The prioritization implies
that when several stall conditions exist at the same time, only the highest priority one will be
counted.

Table 4-74. Unit Masks for FE_BUBBLE (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

ALL b0000 count regardless of cause

FEFLUSH b0001 only if caused by a front-end flush

--- b0010 (*illegal selection*)

GROUP1 b0011 BUBBLE or BRANCH

GROUP2 b0100 IMISS or TLBMISS

IBFULL b0101 only if caused by instruction buffer full stall

IMISS b0110 only if caused by instruction cache miss stall

TLBMISS b0111 only if caused by TLB stall

FILL_RECIRC b1000 only if caused by a recirculate for a fill operation

BRANCH b1001 only if caused by any of 4 branch recirculates

GROUP3 b1010 FILL_RECIRC or BRANCH

ALLBUT_FEFLUSH_BUBBLE b1011 ALL except FEFLUSH and BUBBLE

ALLBUT_IBFULL b1100 ALL except IBFULL
Reference Manual for Software Development and Optimization 131

Performance Monitor Events
FE_LOST_BW
• Title: Invalid Bundles at the Entrance to IB
• Category: Stall Events IAR/DAR/OPC: N/N/N
• Event Code: 0x70, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of invalid bundles at the entrance to Instruction Buffer.
• NOTE: Causes for lost bandwidth are prioritized in the following order from high to low for

this event: FEFLUSH, TLBMISS, IMISS, PLP, BR_ILOCK, BRQ, BI, FILL_RECIRC, BUB-
BLE, IBFULL, UNREACHED. The prioritization implies that when several stall conditions
exist at the same time, only the highest priority one will be counted. There are two cases where a
bundle is considered “unreachable”. When bundle 0 contains a taken branch or bundle 0 is
invalid but has IP[4] set to 1, bundle 1 will not be reached.

BUBBLE b1101 only if caused by branch bubble stall

--- b1110-b1111 (* illegal selection *)

Table 4-74. Unit Masks for FE_BUBBLE (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-75. Unit Masks for FE_LOST_BW

Extension PMC.umask
[19:16] Description

ALL b0000 count regardless of cause

FEFLUSH b0001 only if caused by a front-end flush

--- b0010 (* illegal selection *)

--- b0011 (* illegal selection *)

UNREACHED b0100 only if caused by unreachable bundle

IBFULL b0101 only if caused by instruction buffer full stall

IMISS b0110 only if caused by instruction cache miss stall

TLBMISS b0111 only if caused by TLB stall

FILL_RECIRC b1000 only if caused by a recirculate for a cache line fill operation

BI b1001 only if caused by branch initialization stall

BRQ b1010 only if caused by branch retirement queue stall

PLP b1011 only if caused by perfect loop prediction stall

BR_ILOCK b1100 only if caused by branch interlock stall

BUBBLE b1101 only if caused by branch resteer bubble stall

--- b1101-b1111 (* illegal selection *)
132 Reference Manual for Software Development and Optimization

Performance Monitor Events
FP_FAILED_FCHKF
• Title: Failed fchkf
• Category: Instruction Execution IAR/DAR/OPC: Y/N/N
• Event Code: 0x06, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of times the fchkf instruction failed.

FP_FALSE_SIRSTALL
• Title: SIR Stall Without a Trap
• Category: Instruction Execution IAR/DAR/OPC: Y/N/N
• Event Code: 0x05, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of times SIR (Safe Instruction Recognition) stall is asserted and

does not lead to a trap.

FP_FLUSH_TO_ZERO
• Title: FP Result Flushed to Zero
• Category: Instruction Execution IAR/DAR/OPC: Y/N/N
• Event Code: 0x0b, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of times a near zero result is flushed to zero in FTZ mode. This

has the following umasks.

FP_OPS_RETIRED
• Title: Retired FP Operations
• Category: Instruction Execution IAR/DAR/OPC: Y/N/N
• Event Code: 0x09, Max. Inc/Cyc: 6, MT Capture Type: A
• Definition: Provides information on number of retired floating-point operations, excluding all

predicated off instructions. This is a weighted sum of basic floating-point operations. To count
how often specific opcodes are retired, use IA64_TAGGED_INST_RETIRED.

• NOTE: The following weights are used:
Counted as 4 ops: fpma, fpms, and fpnma
Counted as 2 ops: fpma, fpnma (f2=f0), fma, fms, fnma, fprcpa, fprsqrta, fpmpy, fpmax, fpamin,
fpamax, fpcmp, fpcvt
Counted as 1 op: fms, fma, fnma (f2=f0 or f4=f1), fmpy, fadd, fsub, frcpa, frsqrta, fmin, fmax,
famin, famax, fpmin, fcvt.fx, fcmp

Table 4-76. Unit Masks for FP_FLUSH_TO_ZERO

Extension PMC.umask
[16] Description

FTZ_Real b0 Times FTZ occured

FTZ_Poss b1 Times FTZ would have occured if FTZ were enabled
Reference Manual for Software Development and Optimization 133

Performance Monitor Events
FP_TRUE_SIRSTALL
• Title: SIR Stall Asserted and Leads to a Trap
• Category: Instruction Execution IAR/DAR/OPC: Y/N/N
• Event Code: 0x03, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of times SIR (Safe Instruction Recognition) stall is asserted and

leads to a trap.

HPW_DATA_REFERENCES
• Title: Data Memory References to VHPT
• Category: L1 Data Cache IAR/DAR/OPC: N/N/N
• Event Code: 0x2d, Max. Inc/Cyc: 4, MT Capture Type: A
• Definition: Counts the number of data memory references to VHPT.
• NOTE: This will include misses the L2DTLB did not squash even though the instructions caus-

ing the miss did not get to retirement. HPW references originating very close to an ongoing
thread switch may or may not be counted.

IA64_INST_RETIRED
• Title: Retired Itanium Instructions
• Category: Basic Events IAR/DAR/OPC: Y/N/Y
• Event Code: 0x08, Max. Inc/Cyc: 6, MT Capture Type: A
• Definition: Counts the number of retired instructions excluding hardware generated RSE oper-

ations and instructions. This event includes all retired instructions including predicated off
instructions and nop instructions. This is a sub event of IA64_TAGGED_INST_RETIRED.

• NOTE: MLX bundles will be counted as no more than two instructions. Make sure that the cor-
responding registers are setup such that nothing will be constrained by the IBRP-PMC combina-
tion of interest (power up default is no constraints).

IA64_TAGGED_INST_RETIRED
• Title: Retired Tagged Instructions
• Category: Instruction Execution IAR/DAR/OPC: Y/N/Y
• Event Code: 0x08, Max. Inc/Cyc: 6, MT Capture Type: A
• Definition: Counts the number of retired instructions, excluding hardware generated RSE oper-

ations, that match the Instruction Address Breakpoint (IBRs) and Opcode Match register settings
(PMC32,33,34,35). This event includes all instructions which reached retirement (including
predicated off instructions and nop instructions). See Chapter 3 for more details about how to
program different registers.

• NOTE: MLX bundles will be counted as no more than two instructions.

Table 4-77. Unit Masks for IA64_INST_RETIRED

Extension PMC.umask
[19:16] Description

THIS bxx00 Retired Itanium® Instructions
134 Reference Manual for Software Development and Optimization

Performance Monitor Events
IDEAL_BE_LOST_BW_DUE_TO_FE
• Title: Invalid Bundles at the Exit From IB
• Category: Stall Events IAR/DAR/OPC: N/N/N
• Event Code: 0x73, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of invalid bundles at the exit from Instruction Buffer regardless

of whether Back-end is stalled for other reasons or not.
• NOTE: Causes for lost bandwidth are prioritized in the following order from high to low for

this event: FEFLUSH, TLBMISS, IMISS, PLP, BR_ILOCK, BRQ, BI, FILL_RECIRC, BUB-
BLE, IBFULL, UNREACHED. The prioritization implies that when several stall conditions
exist at the same time, only the highest priority one will be counted. There are two cases where a
bundle is considered “unreachable”. When bundle 0 contains a taken branch or bundle 0 is
invalid but has IP[4] set to 1, bundle 1 will not be reached.

Table 4-78. Unit Masks for IA64_TAGGED_INST_RETIRED

Extension PMC.umask
[19:16] Description

IBRP0_PMC32_33 bxx00 Instruction tagged by Instruction Breakpoint Pair 0 and the
opcode matcher pair PMC32 and PMC33.

IBRP1_PMC34_35 bxx01 Instruction tagged by Instruction Breakpoint Pair 1 and the
opcode matcher pair PMC34 and PMC35.

IBRP2_PMC32_33 bxx10 Instruction tagged by Instruction Breakpoint Pair 2 and the
opcode matcher pair PMC32 and PMC33.

IBRP3_PMC34_35 bxx11 Instruction tagged by Instruction Breakpoint Pair 3 and the
opcode matcher pair PMC34 and PMC35.

Table 4-79. Unit Masks for IDEAL_BE_LOST_BW_DUE_TO_FE

Extension PMC.umask
[19:16] Description

ALL b0000 count regardless of cause

FEFLUSH b0001 only if caused by a front-end flush

--- b0010 (* illegal selection *)

--- b0011 (* illegal selection *)

UNREACHED b0100 only if caused by unreachable bundle

IBFULL b0101 (* meaningless for this event *)

IMISS b0110 only if caused by instruction cache miss stall

TLBMISS b0111 only if caused by TLB stall

FILL_RECIRC b1000 only if caused by a recirculate for a cache line fill operation

BI b1001 only if caused by branch initialization stall

BRQ b1010 only if caused by branch retirement queue stall

PLP b1011 only if caused by perfect loop prediction stall

BR_ILOCK b1100 only if caused by branch interlock stall

BUBBLE b1101 only if caused by branch resteer bubble stall

--- b1101-b1111 (* illegal selection *)
Reference Manual for Software Development and Optimization 135

Performance Monitor Events
INST_CHKA_LDC_ALAT
• Title: Retired chk.a and ld.c Instructions
• Category: Instruction Execution IAR/DAR/OPC: Y/Y/Y
• Event Code: 0x56, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Provides information on the number of all advanced check load (chk.a) and

check load (ld.c) instructions that reach retirement.
• NOTE: Faulting chk.a will be counted even if an older sibling faults.

INST_DISPERSED
• Title: Number of Syllables Dispersed from REN to REG
• Category: Instruction Dispersal Events IAR/DAR/OPC: Y/N/N
• Event Code: 0x4d, Max. Inc/Cyc: 6, MT Capture Type: A
• Definition: Counts the number of syllables dispersed from REName to the REGister pipe stage

in order to approximate those dispersed from ROTate to EXPand.

INST_FAILED_CHKA_LDC_ALAT
• Title: Failed chk.a and ld.c Instructions
• Category: Instruction Execution IAR/DAR/OPC: Y/Y/Y
• Event Code: 0x57, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Provides information on the number of failed advanced check load (chk.a) and

check load (ld.c) instructions that reach retirement.
• NOTE: Although at any given time, there could be 2 failing chk.a or ld.c, only the first one

is counted.

Table 4-80. Unit Masks for INST_CHKA_LDC_ALAT

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

INT bxx01 only integer instructions

FP bxx10 only floating-point instructions

ALL bxx11 both integer and floating-point instructions

Table 4-81. Unit Masks for INST_FAILED_CHKA_LDC_ALAT

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

INT bxx01 only integer instructions

FP bxx10 only floating-point instructions

ALL bxx11 both integer and floating-point instructions
136 Reference Manual for Software Development and Optimization

Performance Monitor Events
INST_FAILED_CHKS_RETIRED
• Title: Failed chk.s Instructions
• Category: Instruction Execution IAR/DAR/OPC: N/N/N
• Event Code: 0x55, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Provides information on the number of failed speculative check instructions

(chk.s).

ISB_BUNPAIRS_IN
• Title: Bundle Pairs Written from L2I into FE
• Category: L1 Instruction Cache and prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x46, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Provides information about the number of bundle pairs (32 bytes) written from L2I

(and beyond) into the front end.
• NOTE: This event is qualified with IBRP0 if the cache line was tagged as a demand fetch and

IBRP1 if the cache line was tagged as a prefetch match.

ITLB_MISSES_FETCH
• Title: Instruction Translation Buffer Misses Demand Fetch
• Category: TLB IAR/DAR/OPC: Y/N/N
• Event Code: 0x47, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of ITLB misses for demand fetch.

Table 4-82. Unit Masks for INST_FAILED_CHKS_RETIRED

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

INT bxx01 only integer instructions

FP bxx10 only floating-point instructions

ALL bxx11 both integer and floating-point instructions

Table 4-83. Unit Masks for ITLB_MISSES_FETCH

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

L1ITLB bxx01 All misses in L1ITLB will be counted. even if L1ITLB is not
updated for an access (Uncacheable/nat page/not present
page/faulting/some flushed), it will be counted here.

L2ITLB bxx10 All misses in L1ITLB which also missed in L2ITLB will be
counted.

ALL bxx11 All tlb misses will be counted. Note that this is not equal to
sum of the L1ITLB and L2ITLB umasks because any access
could be a miss in L1ITLB and L2ITLB.
Reference Manual for Software Development and Optimization 137

Performance Monitor Events
L1DTLB_TRANSFER
• Title: L1DTLB Misses that Hit in the L2DTLB for Accesses Counted in L1D_READS
• Category: TLB/L1D Cache Set 0 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xc0, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of times an L1DTLB miss hits in the L2DTLB for an access

counted in L1D_READS.
• NOTE: This is a restricted set 0 L1D Cache event. In order to measure this event, one of the

events in this set must be measured by PMD5. In code sequence a;;b if “a” takes an exception
and “b” requires an L2DTLB->L1DTLB transfer, the transfer is performed but not counted in
this event. This is necessary to remain consistent with L1D_READS which will not count “b”
because it is not reached. If thread switch occurs in the middle of DET stall while a transfer is
pending, this event won’t be counted.

L1D_READS_SET0
• Title: L1 Data Cache Reads (Set 0)
• Category: L1 Data Cache/L1D Cache Set 0 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xc2, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of data memory read references issued into memory pipeline

which are serviced by L1D (only integer loads), RSE loads, L1-hinted loads (L1D returns data if
it hits in L1D but does not do a fill) and check loads (ld.c). Uncacheable reads, VHPT loads,
semaphores, floating-point loads, and lfetch instructions are not counted here because L1D
does not handle these. The count includes wrong path operations but excludes predicated off
operations.

• NOTE: This is a restricted set 0 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. Only ports 0 and 1 are measured.

L1D_READS_SET1
• Title: L1 Data Cache Reads (Set 1)
• Category: L1 Data Cache/L1D Cache Set 1 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xc4, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of data memory read references issued into memory pipeline

which are serviced by L1D (only integer loads), RSE loads, L1-hinted loads (L1D returns data if
it hits in L1D but does not do a fill) and check loads (ld.c). Uncacheable reads, VHPT loads,
semaphores, floating-point loads and lfetch instructions are not counted here because L1D
does not handle these. The count includes wrong path operations but excludes predicated off
operations.

• NOTE: This is a restricted set 1 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. Only ports 0 and 1 are measured.

L1D_READ_MISSES
• Title: L1 Data Cache Read Misses
• Category: L1 Data Cache/L1D Cache Set 1 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xc7, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of L1 Data Cache read misses. L1 Data Cache is write through;

therefore write misses are not counted. The count only includes misses caused by references
counted by L1D_READS event. It will include L1D misses which missed the ALAT but not
138 Reference Manual for Software Development and Optimization

Performance Monitor Events
those which hit in the ALAT. Semaphores are not handled by L1D and are not included in this
count

• NOTE: This is a restricted set 1 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5. Only ports 0 and 1 are measured.

L1ITLB_INSERTS_HPW
• Title: L1ITLB Hardware Page Walker Inserts
• Category: TLB IAR/DAR/OPC: Y/N/N
• Event Code: 0x48, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of L1ITLB inserts done by Hardware Page Walker.

L1I_EAR_EVENTS
• Title: Instruction EAR Events
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x43, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of L1 Instruction Cache or L1ITLB events captured by EAR.

L1I_FETCH_ISB_HIT
• Title: “Just-In-Time” Instruction Fetch Hitting In and Being Bypassed from ISB
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x66, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Provides information about an instruction fetch hitting in and being bypassed from

the ISB (Instruction Streaming Buffer). It will not count “critical bypasses,” i.e. anytime the
pipeline has to stall waiting for data to be delivered from L2I. It will count “just-in-time
bypasses,” i.e. when instruction data is delivered by the L2I in time for the instructions to be con-
sumed without stalling the front-end pipe.

• NOTE: Demand fetches which hit the ISB at the same time as they are being transferred to the
Instruction Cache (1 cycles window) will not be counted because they have to be treated as cache
hits for the purpose of branch prediction. This event is qualified with IBRP0 if the cache line was
tagged as a demand fetch and IBRP1 if the cache line was tagged as a prefetch match.

L1I_FETCH_RAB_HIT
• Title: Instruction Fetch Hitting in RAB
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x65, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Provides Information about instruction fetch hitting in the RAB.
• NOTE: This event is qualified with IBRP0 if the cache line was tagged as a demand fetch and

IBRP1 if the cache line was tagged as a prefetch match.

Table 4-84. Unit Masks for L1D_READ_MISSES

Extension PMC.umask
[19:16] Description

ALL bxxx0 all L1D read misses will be counted.

RSE_FILL bxxx1 only L1D read misses caused by RSE fills will be counted
Reference Manual for Software Development and Optimization 139

Performance Monitor Events
L1I_FILLS
• Title: L1 Instruction Cache Fills
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x41, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Provides information about the number of line fills from ISB to the L1 Instruction

Cache (64-byte chunks).
• NOTE: This event is qualified with IBRP0 if the cache line was tagged as a demand fetch or

IBRP1 if the cache line was tagged as a prefetch match. It is impossible for this event to fire if
the corresponding entry is not in L1ITLB

L1I_PREFETCHES
• Title: L1 Instruction Prefetch Requests
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x44, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Provides information about the number of issued L1 cache line prefetch requests

(64 bytes/line). The reported number includes streaming and non-streaming prefetches (hits and
misses in L1 Instruction Cache are both included).

• NOTE: This event is qualified with IBRP1

L1I_PREFETCH_STALL
• Title: Prefetch Pipeline Stalls
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N
• Event Code: 0x67, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Provides Information on why the prefetch pipeline is stalled.

L1I_PURGE
• Title: L1ITLB Purges Handled by L1I
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x4b, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Provides information on the number of L1ITLB purges handled by L1I. This event

is caused by a purge instruction, global purge from the bus cluster, inserts into L2ITLB. It is not
the same as column invalidates which are done on L1ITLB.

Table 4-85. Unit Masks for L1I_PREFETCH_STALL

Extension PMC.umask
[19:16] Description

--- bxx00-bxx01 (* nothing will be counted *)

FLOW bxx10 Asserted when the streaming prefetcher is working close to
the instructijons being fetched for demand reads, and is not
asserted when the streaming prefetcher is ranging way
ahead of the demand reads.

ALL bxx11 Number of clocks prefetch pipeline is stalled
140 Reference Manual for Software Development and Optimization

Performance Monitor Events
L1I_PVAB_OVERFLOW
• Title: PVAB Overflow
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N
• Event Code: 0x69, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Provides Information about the Prefetch Virtual Address Buffer overflowing.

L1I_RAB_ALMOST_FULL
• Title: Is RAB Almost Full?
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N
• Event Code: 0x64, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Provides Information about Read Address Buffer being almost full.

L1I_RAB_FULL
• Title: Is RAB Full?
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N
• Event Code: 0x60, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Provides Information about Read Address Buffer being full.

L1I_READS
• Title: L1 Instruction Cache Reads
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x40, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Provides information about the number of demand fetch reads (i.e. all accesses

regardless of hit or miss) to the L1 Instruction Cache (32-byte chunks).
• NOTE: Demand fetches which have an L1ITLB miss, and L1I cache miss, and collide with a

fill-recirculate to icache, will not be counted in this event even though they will be counted in
L2I_DEMAND_READS.

L1I_SNOOP
• Title: Snoop Requests Handled by L1I
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/Y/Y
• Event Code: 0x4a, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Provides information on the number of snoop requests (64-byte granular) handled

by L1I.
• NOTE: Each “fc” instruction will produce 1 snoop request to L1I after it goes out on the bus. If

IFR snoop pipeline is busy when L1D sends the snoop to IFR, this event will count more than
once for the same snoop. A victimized line will also produce a snoop. Some bus transactions also
can cause L1I snoops.
Reference Manual for Software Development and Optimization 141

Performance Monitor Events
L1I_STRM_PREFETCHES
• Title: L1 Instruction Cache Line Prefetch Requests
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x5f, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Provides Information about the number of L1I cache line prefetch requests (64

bytes/line) which go through prefetch pipeline (i.e. hit or miss in L1I cache is not factored in) in
streaming mode only (initiated by br.many).

• NOTE: This event is qualified with IBRP1

L2DTLB_MISSES
• Title: L2DTLB Misses
• Category: TLB/L1D Cache Set 0 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xc1, Max. Inc/Cyc: 4, MT Capture Type: A
• Definition: Counts the number of L2DTLB misses (which is the same as references to HPW;

DTLB_HIT=0) for demand requests.
• NOTE: This is a restricted set 0 L1D Cache event. In order to measure this event, one of the

events in this set must be measured by PMD5. If HPW is enabled all the time, this event and
HPW_DATA_REFERENCES are equivalent. This will include misses the L2DTLB did not
squash even though the instructions causing the miss did not get to retirement. If thread switch
occurs in the middle of DET stall while this is pending, this event won’t be reported.

L2D_BAD_LINES_SELECTED
• Title: Valid Line Replaced When Invalid Line Is Available
• Category: L2 Data Cache Set 5 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xec, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of times a valid line was selected for replacement when an

invalid line was available.
• NOTE: This is a restricted set 5 L2D Cache event that is paired with

L2D_STORE_HIT_SHARED. Active thread is used as an approximation for this count.

L2D_BYPASS
• Title: Count L2D Bypasses
• Category: L2 Data Cache Set 1 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xe4, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of times a bypass occurred.
• NOTE: This is a restricted L2D cache event that is paired with L2D_OZQ_RELEASE. Active

thread is the true thread for the count. The Itanium 2 processor version of this count was too
speculative to be useful. On Montecito it now counts only bypasses that were successful. It also

Table 4-86. Unit Masks for L2D_BAD_LINES_SELECTED

Extension PMC.umask
[19:16] Description

ANY b0xxx Valid line replaced when invalid line is available
142 Reference Manual for Software Development and Optimization

Performance Monitor Events
supplies a count of the number of bypasses, rather than just an indication that a bypass occurred.
Note that two of the bypass counts are not .all capable.

L2D_FILLB_FULL
• Title: L2D Fill Buffer Is Full
• Category: L2 Data Cache Set 7 IAR/DAR/OPC: N/N/N
• Event Code: 0xf1, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of times L2D Fill Buffer is full.
• NOTE: This is a restricted set 7 L2D Cache event that is paired with L2D_OPS_ISSUED. The

active thread is used as an approximation for this count. This event is not .all capable.

L2D_FILL_MESI_STATE
• Title: L2D Cache Fills with MESI state
• Category: L2 Data Cache Set 8 IAR/DAR/OPC: N/N/N
• Event Code: 0xf2, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of times the L2D cache is filled with a particular MESI state.
• NOTE: This is a restricted set 8 L2D Cache event that is paired with L2D_VICTIMB_FULL.

This event uses the true thread id for the filling operation. Note that the fill states of I and P cor-

Table 4-87. Unit Masks for L2D_BYPASS

Extension PMC.umask
[19:16] Description

L2_DATA1 bxx00 Count only L2D hit data bypasses (L1D to L2A).
NOTE: Not .all capable.

L2_DATA2 bxx01 Count only L2D hit data bypasses (L1W to L2I).
NOTE: Not .all capable.

L3_DATA1 bxx10 Count only L3 data bypasses (L1D to L2A).
NOTE: Is .all capable.

--- bxx11 (* nothing will be counted *)

Table 4-88. Unit Masks for L2D_FILLB_FULL

Extension PMC.umask
[19:16] Description

THIS b0000 L2D Fill buffer is full.
NOTE: Not .all capable.

--- b0001-b1111 (* count is undefined *)
Reference Manual for Software Development and Optimization 143

Performance Monitor Events
respond to inflight snoop vs. fill conflicts. The addition of the I and P counts would equal the
count of L2_SYNTH_PROBE count from the Itanium 2 processor.

L2D_FORCE_RECIRC
• Title: Forced Recirculates
• Category: L2 Data Cache Set 4 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xea, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of L2D ops forced to recirculate on insertion to OZQ, with the

exception of SNP_OR_L3. SNP_OR_L3 will measure the number of times L2D ops are forced
to recirculate. Anywhere from 0-32 ops can be affected by this one. All categories with the
exception of TRAN_PERF, and SNP_OR_L3 occur at the insertion into the OZQ. SNP_OR_L3
is when an existing OZQ entry is forced to recirculate because an incoming snoop request
matched its address or an access is issued to the L3/BC which will fill the same way/index this
OZQ_ENTRY has “hit” in. TRAN_PREF is when an existing OZQ access is transformed into a
prefetch. This event has changed significantly since the Itanium 2 processor due to the complex-
ity of trying to use these counts to generate L2D cache hit and miss rates. The
L0W,OZQ_MISS,and FILL_HIT counts have been OR’d together to create the SECONDARY
counts, which include separate qualifications on reads or writes (semaphores and read modify
write stores will be counted on both). This allows secondary misses (the term for an operation
that inserts into OZQ as a miss when a miss for the same line is already outstanding) to be
counted from only one set event. The LIMBO count was also added to see how many operations
were inserting into limbo on there initial insert. The VIC_PEND count has been removed to
make room since it usually only implied an L0W event.

• NOTE: This is a restricted set 4 L2D Cache event that is paired with
L2D_ISSUED_RECIRC_OZQ_ACC. Active thread is the correct thread or an approximation
depending on the umask. Some umasks are not .all capable.

Table 4-89. Unit Masks for L2D_FILL_MESI_STATE

Extension PMC.umask
[19:16] Description

M bx000 Modified

E bx001 Exclusive

S bx010 Shared

I bx011 Invalid

P bx1xx Pending

Table 4-90. Unit Masks for L2D_FORCE_RECIRC (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

RECIRC b00x0 Counts inserts into OzQ due to a recirculate. The recirculate
due to secondary misses or various other conflicts
NOTE: Active Thread is Accurate. Is .all capable.

LIMBO b00x1 Count operations that went into the LIMBO Ozq state. This
state is entered when the the op sees a FILL_HIT or
OZQ_MISS event.
NOTE: Active Thread is Accurate. Is .all capable.
144 Reference Manual for Software Development and Optimization

Performance Monitor Events
TAG_NOTOK b0100 Count only those caused by L2D hits caused by in flight
snoops, stores with a sibling miss to the same index, sibling
probe to the same line or a pending mf.a instruction. This
count can usually be ignored since its events are rare,
unpredictable, and/or show up in one of the other events.
NOTE: Active Thread is Accurate. Not .all capable.

TRAN_PREF b0101 Count only those caused by L2D miss requests that
transformed to prefetches
NOTE: Active Thread is Approximation. Not .all capable.

SNP_OR_L3 b0110 Count only those caused by a snoop or L3 issue.
NOTE: Active Thread is Approximation. Not .all capable.

TAG_OK b0111 Count operations that inserted to Ozq as a hit. Thus it was
NOT forced to recirculate. Likely identical to
L2D_INSERT_HITS.
NOTE: Active Thread is Accurate. Not .all capable.

FILL_HIT b1000 Count only those caused by an L2D miss which hit in the fill
buffer.
NOTE: Active Thread is Accurate. Is .all capable.

FRC_RECIRC b1001 Caused by an L2D miss when a force recirculate already
existed in the Ozq.
NOTE: Active Thread is Accurate. Is .all capable.

SAME_INDEX b1010 Caused by an L2D miss when a miss to the same index was
in the same issue group.
NOTE: Active Thread is Accurate. Is .all capable.

OZQ_MISS b1011 Caused by an L2D miss when an L2D miss was already in
the OZQ.
NOTE: Active Thread is Accurate. Is .all capable.

L1W b1100 Count only those caused by a L2D miss one cycle ahead of
the current op.
NOTE: Active Thread is Accurate. Is .all capable.

SECONDARY_READ b1101 Caused by L2D read op that saw a miss to the same
address in OZQ, L2 fill buffer, or one cycle ahead in the
main pipeline.
NOTE: Active Thread is Accurate. Is .all capable.

SECONDARY_WRITE b1110 Caused by L2D write op that saw a miss to the same
address in OZQ, L2 fill buffer, or one cycle ahead in the
main pipeline.
NOTE: Active Thread is Accurate. Is .all capable.

SECONDARY_ALL b1111 Caused by any L2D op that saw a miss to the same address
in OZQ, L2 fill buffer, or one cycle ahead in the main
pipeline.
NOTE: Active Thread is Accurate. Is .all capable.

Table 4-90. Unit Masks for L2D_FORCE_RECIRC (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description
Reference Manual for Software Development and Optimization 145

Performance Monitor Events
L2D_INSERT_HITS
• Title: Count Number of Times an Inserting Data Request Hit in the L2D.
• Category: L2 Data Cache IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xb1, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of times a cacheable data request hit the L2D cache on its first

lookup. Thus this event will not count secondary misses that eventually became hits, thus allow-
ing a more reliable hit and miss rate calculation. This count is new for Montecito.

• NOTE: This is a NOT a restricted L2D Cache event. This event uses active thread for a true
thread indication.

L2D_INSERT_MISSES
• Title: Count Number of Times an Inserting Data Request Missed the L2D.
• Category: L2 Data Cache IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xb0, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of times a cacheable data request missed the L2D cache on its

first lookup. Thus this event will count secondary misses and other misses that were forced to
recirculate. This allows for a more reliable miss rate calculation as compared to the method the
Itanium 2 uses for counting L2_MISSES and adding a combination of L2_FORCE_RECIRC
events.

• NOTE: This is a NOT a restricted L2D Cache event. This event uses active thread for a true
thread indication.

L2D_ISSUED_RECIRC_OZQ_ACC
• Title: Count Number of Times a Recirculate Issue Was Attempted and Not Preempted
• Category: L2 Data Cache Set 4 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xeb, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of times a recirculate was attempted that didn't get preempted

by a fill/confirm/evervalid (fill/confirm tag updates have higher priority) or by an older sibling
issuing a recirculate (only one recirculate can be sent per clock). This value can be added to
L2D_OZQ_CANCELS*.RECIRC for the total number of times the L2D issue logic attempted to
issue a recirculate.

• NOTE: This is a restricted L2D Cache event that is paired with
L2D_FORCE_RECIRCULATE. This event uses the true thread id of the given recirculate.

L2D_L3ACCESS_CANCEL
• Title: L2D Access Cancelled by L2D
• Category: L2 Data Cache Set 3 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xe8, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of canceled L3 accesses. A unit mask, as specified in the fol-

lowing table, narrows this event down to a specific reason for the cancel. This event includes one
event for dynamic throttling of L2D transform to prefetches and L2D Ozq tail collapse disabling.

• NOTE: This is a restricted set 3 L2D Cache event that is paired with L2D_OZDB_FULL. The
L2D reject events used their true thread id. The dynamic disabling and non-coverage events use
active thread as an approximation. None of the umasks in this event are .all capable. umasks
‘bx000 to ‘bx011 use the true tread of the access. umasks ‘bx100 to ‘bx111 use the active thread.
146 Reference Manual for Software Development and Optimization

Performance Monitor Events
L2D_MISSES
• Title: L2D Misses
• Category: L2 Data Cache IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xcb, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of L2D cache misses (in terms of the number of L2D cache line

requests sent to L3). It includes all cacheable data requests. This event does not count secondary
L2D misses. To count secondary misses as well as primary misses use the new
L2D_INSERT_MISSES count.

• NOTE: This count is not set restricted. This count uses its true thread id.

Table 4-91. Unit Masks for L2D_L3ACCESS_CANCEL

Extension PMC.umask
[19:16] Description

INV_L3_BYP bx000 L2D cancelled a bypass because it did not commit, or was
not a valid opcode to bypass, or was not a true miss of L2D
(either hit,recirc,or limbo)
NOTE: Active thread is accurate.

SPEC_L3_BYP bx001 L2D cancelled speculative L3 bypasses because it was not
a WB memory attribute or it was an effective release.
NOTE: Active thread is accurate.

ANY bx010 count cancels due to any reason. This umask will count
more than the sum of all the other umasks. It will count
things that weren't committed accesses when they reached
L1w, but the L2D attempted to bypass them to the L3
anyway (speculatively). This will include accesses made
repeatedly while the main pipeline is stalled and the L1d is
attempting to recirculate an access down the L1d pipeline.
Thus, an access could get counted many times before it
really does get bypassed to the L3. It is a measure of how
many times we asserted a request to the L3 but didn't
confirm it.
NOTE: Active thread is accurate.

ER_REJECT bx011 Count only requests that were rejected by ER
NOTE: Active thread is accurate.

P2_COV_SNP_TEM bx100 A snoop saw an L2D tag error and missed
NOTE: Active thread is approximation.

P2_COV_SNP_VIC bx101 A snoop hit in the L1D victim buffer
NOTE: Active thread is approximation.

P2_COV_SNP_FILL_NOSNP bx110 A snoop and a fill to the same address reached the L2D
within a 3 cycle window of each other or a snoop hit a
nosnoops entry in Ozq.
NOTE: Active thread is approximation.

TAIL_TRANS_DIS bx111 Count the number of cycles that either transform to
prefetches or Ozq tail collapse have been dynamically
disabled. This would indicate that memory contention has
lead the L2D to throttle request to prevent livelock
scenarios.
NOTE: Active thread is approximation.
Reference Manual for Software Development and Optimization 147

Performance Monitor Events
L2D_OPS_ISSUED
• Title: Operations Issued By L2D
• Category: L2 Data Cache Set 7 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xf0, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of operations issued by L2D as hits as specified by the opera-

tion type. This does not count operations that were cancelled. This event will count operations
that originally missed L2D but then became hits and completed.

• NOTE: This is a restricted set 7 L2D Cache event that is paired with L2D_FILLB_FULL. This
count uses the true thread id. This event incorrectly counted semaphores under OTHER in the
Itanium 2 processor. Montecito has fixed that bug and added an lfetch count as well. None of
these events are .all capable.

L2D_OZDB_FULL
• Title: L2D OZ Data Buffer Is Full
• Category: L2 Data Cache Set 3 IAR/DAR/OPC: N/N/N
• Event Code: 0xe9, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of cycles the L2D Oz Data Buffer is full.
• NOTE: This is a restricted set L2D Cache event that is paired with

L2D_L3_ACCESS_CANCELS. This event uses the active thread id for an approximation.

Table 4-92. Unit Masks for L2D_OPS_ISSUED

Extension PMC.umask
[19:16] Description

INT_LOAD bx000 Count only valid integer loads, including ld16.

FP_LOAD bx001 Count only valid floating-point loads

RMW bx010 Count only valid read_modify_write stores and semaphores
including cmp8xchg16.

STORE bx011 Count only valid non-read_modify_write stores, including
st16.

LFETCH bx1x0 Count only lfetch operations.

OTHER bx1x1 Count only valid non-load, no-store accesses that are not
listed above.

Table 4-93. Unit Masks for L2D_OZDB_FULL

Extension PMC.umask
[19:16] Description

THIS b0000 L2D OZ Data Buffer is full

--- b0001-b1111 (* count is undefined *)
148 Reference Manual for Software Development and Optimization

Performance Monitor Events
L2D_OZQ_ACQUIRE
• Title: Acquire Ordering Attribute Exists in L2D OZQ
• Category: L2 Data Cache Set 6 IAR/DAR/OPC: N/N/N
• Event Code: 0xef , Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of clocks for which the “acquire” ordering attribute existed in

the L2D OZ Queue.
• NOTE: This is a restricted set 6 L2D Cache event. This event uses active thread as an approxi-

mation.

L2D_OZQ_CANCELS0
• Title: L2D OZQ Cancels (Specific Reason Set 0)
• Category: L2 Data Cache Set 0 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xe0, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of total L2D OZ Queue Cancels due to a specific reason (based

on umask).
• NOTE: This is a restricted set 0 L2D Cache event that is grouped with L2D_OZQ_CANCELS1

and L2D_OZQ_FULL. Only 1 of the 2 L2D_OZQ_CANCEL events may be measured at any
given time. This event counts with the true thread id of the operation. Compared to the Itanium 2
processor, several counts have been removed due to their rare occurrence, or due to ifetch
removal. They are ECC, SCRUB, D_IFETCH, and HPW_IFETCH_CONF. Other related events
were combined together to reduce the number of sample intervals required to collect all of the
umasked events. Those that were combined are mentioned in the description column.

Table 4-94. Unit Masks for L2D_OZQ_CANCELS0 (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

RECIRC b0000 a recirculate was cancelled due h/w limitations on
recirculate issue rate. This is the combination of following
subevents that were available separately in the Itanium® 2
processor:
RECIRC_OVER_SUB: (caused by a recirculate
oversubscription)
DIDNT_RECIRC: (caused because it did not recirculate)
WEIRD: (counts the cancels caused by attempted 5-cycle
bypasses for non-aligned accesses and bypasses blocking
recirculates for too long)

CANC_L2M_TO_L2C_ST b0001 caused by a canceled store in L2M,L2D or L2C. This is the
combination of following subevents that were available
separately in the Itanium 2 processor:
CANC_L2M_ST: (caused by canceled store in L2M)
CANC_L2D_ST: (caused by canceled store in L2D)
CANC_L2C_ST: (caused by canceled store in L2C)

L2A_ST_MAT b0010 canceled due to an uncanceled store match in L2A

L2M_ST_MAT b0011 canceled due to an uncanceled store match in L2M

L2D_ST_MAT b0100 canceled due to an uncanceled store match in L2D

L2C_ST_MAT b0101 canceled due to an uncanceled store match in L2C

ACQ b0110 caused by an acquire somewhere in Ozq or ER.

REL b0111 a release was cancelled due to some other operation
Reference Manual for Software Development and Optimization 149

Performance Monitor Events
BANK_CONF b1000 a bypassed L2D hit operation had a bank conflict with an
older sibling bypass or an older operation in the L2D
pipeline.

SEMA b1001 a semaphore op was cancelled for various ordering or h/w
restriction reasons. This is the combination of following
subevents that were available separately in the Itanium® 2
processor:
SEM: (a semaphore)
CCV: (a CCV)

OVER_SUB b1010 a high Ozq issue rate resulted in the L2D having to cancel
due to hardware restrictions.
This is the combination of following subevents that were
available separately in the Itanium 2 processor:
OVER_SUB: (oversubscription)
L1DF_L2M: (L1D fill in L2M)

OZQ_PREEMPT b1011 an L2D fill return conflicted with, and cancelled, an ozq
request for various reasons. Formerly known as
L1_FILL_CONF.

WB_CONF b1100 an OZQ request conflicted with an L2D data array read for a
writeback.
This is the combination of following subevents that were
available separately in the Itanium 2 processor:
READ_WB_CONF: (a write back conflict)
ST_FILL_CONF: (a store fill conflict)

MISC_ORDER b1101 a sync.i or mf.a .
This is the combination of following subevents that were
available separately in the Itanium 2 processor:
SYNC: (caused by sync.i)
MFA: (a memory fence instruction)

FILL_ST_CONF b1110 an OZQ store conflicted with a returning L2D fill

OZDATA_CONF b1111 an OZQ operation that needed to read the OZQ data buffer
conflicted with a fill return that needed to do the same.

Table 4-94. Unit Masks for L2D_OZQ_CANCELS0 (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description
150 Reference Manual for Software Development and Optimization

Performance Monitor Events
L2D_OZQ_CANCELS1
• Title: L2D OZQ Cancels (Late or Any)
• Category: L2 Data Cache Set 0 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xe2, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of total L2D OZ Queue Cancels (regardless of reason) or L2D

OZ Queue Cancels due to a specific reason (based on umask).
• NOTE: This is a restricted set 0 L2D Cache event that is grouped with L2D_OZQ_CANCELS1

and L2D_OZQ_FULL. Only 1 of the 2 L2D_OZQ_CANCEL events may be measured at any
given time. This event counts with the true thread id of the operation

L2D_OZQ_FULL
• Title: L2D OZQ Is Full
• Category: L2 Data Cache Set 0 IAR/DAR/OPC: N/N/N
• Event Code: 0xe1, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of times L2D OZQ is full.
• NOTE: This is a restricted set 0 L2D cache event that is grouped with

L2D_OZQ_CANCELS0/1. This event uses active thread as an approximation. This event is not
.all capable.

Table 4-95. Unit Masks for L2D_OZQ_CANCELS0

Extension PMC.umask
[19:16] Description

ANY bxx00 counts the total OZ Queue cancels

LATE_SPEC_BYP bxx01 counts the late cancels caused by speculative bypasses

SIBLING_ACQ_REL bxx10 counts the late cancels caused by releases and acquires in
the same issue group.
This is the combination of following subevents that were
available separately in the Itanium® 2 processor:
LATE_ACQUIRE: (late cancels caused by acquires)
LATE_RELEASE: (late cancels caused by releases)

LATE_BYP_EFFRELEASE bxx11 counts the late cancels caused by L1D to L2A bypass
effective releases

Table 4-96. Unit Masks for L2D_OZQ_FULL

Extension PMC.umask
[19:16] Description

THIS b0000 L2D OZQ is full.
NOTE: Not .all capable.

--- b0001-b1111 (* count is undefined *)
Reference Manual for Software Development and Optimization 151

Performance Monitor Events
L2D_OZQ_RELEASE
• Title: Release Ordering Attribute Exists in L2D OZQ
• Category: L2 Data Cache Set 1 IAR/DAR/OPC: N/N/N
• Event Code: 0xe5, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of clocks entries with an “effective release” ordering attribute

existed in the L2D OZ Queue. This includes not just architected .rel instructions, but also effec-
tive releases due to loads and stores to the same 4 byte chunk.

• NOTE: This is a restricted set 1L2D Cache event that is paired with L2D_BYPASS. This event
uses active thread as an approximation. This event is not .all capable.

L2D_REFERENCES
• Title: Data Read/Write Access to L2D
• Category: L2 Data Cache Set 2 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xe6, Max. Inc/Cyc: 4, MT Capture Type: F
• Definition: Counts the number of requests made to L2D due to a data read and/or write access.

Semaphore operations are counted as one read and one write.
• NOTE: This is a restricted set 2 L2D cache event that does not share an event code. Active

thread is the true thread for the count.

L2D_STORE_HIT_SHARED
• Title: Store Hit a Shared Line
• Category: L2 Data Cache Set 5 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xed, Max. Inc/Cyc: 2, MT Capture Type: F
• Definition: Counts the number of times a store hit a shared line.
• NOTE: This is a restricted set 5 L2D Cache event that is paired with

L2D_NUM_BAD_LINES_SELECTED. This event uses active thread as an approximation.

Table 4-97. Unit Masks for L2D_REFERENCES

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

READS bxx01 count only data read and semaphore operations.

WRITES bxx10 count only data write and semaphore operations

ALL bxx11 count both read and write operations (semaphores will count
as 2)

Table 4-98. Unit Masks for L2D_STORE_HIT_SHARED

Extension PMC.umask
[19:16] Description

ANY b0xxx Store hit a shared line
152 Reference Manual for Software Development and Optimization

Performance Monitor Events
L2D_VICTIMB_FULL
• Title: L2D Victim Buffer Is Full
• Category: L2 Data Cache Set 8 IAR/DAR/OPC: N/N/N
• Event Code: 0xf3, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of times L2D Victim Buffer is full.
• NOTE: This is a restricted set 8 L2D Cache event that is paired with

L2D_FILL_MESI_STATE. This event uses active thread for an approximation.

L2I_DEMAND_READS
• Title: L2 Instruction Demand Fetch Requests
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x42, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of instruction requests to L2I due to L1I demand fetch misses.

This event counts the number of demand fetches that miss both the L1I and the ISB regardless of
whether they hit or miss in the RAB.

• NOTE: If a demand fetch does not have an L1ITLB miss, L2I_DEMAND_READS and
L1I_READS line up in time. If a demand fetch does not have an L2ITLB miss,
L2I_DEMAND_READS follows L1I_READS by 3-4 clocks (unless a flushed iwalk is pending
ahead of it; which will increase the delay until the pending iwalk is finished). If demand fetch
has an L2ITLB miss, the skew between L2I_DEMAND_READS and L1I_READS is not deter-
ministic.

L2I_HIT_CONFLICTS
• Title: L2I hit conflicts
• Category: L2 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x7d, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: The number of times a tagged demand or prefetch request from IFR to L2I would

have hit a valid line in the L2I cache, except that L2I was forced to abandon the lookup, either
because the internal L2I read buffers don’t have enough room left to buffer the read data (due to
simultaneous higher-priority L3/BC fill data returns), or because a simultaneous snoop might be
invalidating the line. In rare cases, this event may be signalled multiple times for a single request
from IFR. The final time the request moves down the L2I pipeline, it also reports a single

Table 4-99. Unit Masks for L2D_VICTIMB_FULL

Extension PMC.umask
[19:16] Description

THIS b0000 L2D victim buffer is full

--- b0001-b1111 (* count is undefined *)
Reference Manual for Software Development and Optimization 153

Performance Monitor Events
L2I_READS.HIT.DMND or L2I_READS.MISS.DMND(PFTCH) (or
L2I_UC_READS.DMND(PFTCH)) event, as appropriate.

• NOTE: This event is qualified with IBRP1

L2I_L3_REJECTS
• Title: L3 rejects
• Category: L2 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x7c, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: The number of times a tagged demand and prefetch requests from IFR to L2I

misses in the L2I cache and attempts to issue to L3/BC, but has its L3/BC request rejected. This
could be the result of a queue full condition in L3/BC, or it could be due to a previous L2I or
L2D request to L3/BC for the same address. In any case, the L2I keeps trying to send its request
to L3/BC until it finally gets accepted. Note that this event is signalled once for every time an
L3/BC request is rejected and sent again, and so it can fire multiple times for a single request
from IFR. The request also reports a single L2I_READS.MISS.DMND(PFTCH) or
L2I_UC_READS.DMND(PFTCH) (as appropriate) event.

• NOTE: This event is qualified with IBRP1.

Table 4-100. Unit Masks for L2I_HIT_CONFLICTS

Extension PMC.umask
[19:16] Description

--- 00xx None is counted

HIT.NONE 0100 None is counted

HIT.DMND 0101 Only demand fetches that hit the L2I are counted

HIT.PFTCH 0110 Only prefetches that hit the L2I are counted

HIT.ALL 0111 All fetches that hit the L2I are counted

MISS.NONE 1000 None is counted

MISS.DMND 1001 Only demand fetches that miss the L2I are counted

MISS.PFTCH 1010 Only prefetches that miss the L2I are counted

MISS.ALL 1011 All fetches that miss the L2I are counted

ALL.NONE 1100 None is counted

ALL.DMND 1101 Demand fetches that reference L2I are counted

ALL.PFTCH 1110 Prefetches that reference L2I are counted

ALL.ALL 1111 All fetches that reference L2I are counted

Table 4-101. Unit Masks for L2I_L3_REJECTS (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

--- 00xx None is counted

HIT.NONE 0100 None is counted

HIT.DMND 0101 Only demand fetches that hit the L2I are counted

HIT.PFTCH 0110 Only prefetches that hit the L2I are counted

HIT.ALL 0111 All fetches that hit the L2I are counted

MISS.NONE 1000 None is counted

MISS.DMND 1001 Only demand fetches that miss the L2I are counted
154 Reference Manual for Software Development and Optimization

Performance Monitor Events
L2I_PREFETCHES
• Title: L2 Instruction Prefetch Requests
• Category: L1 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x45, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts number of prefetch requests issued to the L2I cache. The reported number

includes streaming and non-streaming prefetches.
• NOTE: This event is qualified with IBRP1.

L2I_READS
• Title: L2I Cacheable Reads
• Category: L2 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x78, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Provides number of cacheable code reads handled by L2I. Event

L2I_READS.MISS.ALL counts only the primary misses. Secondary misses are counted (may be
multiple times) in L2I_RECIRCULATES event and finally counted once as
L2I_READS.HIT.ALL

• NOTE: This event is qualified with IBRP1.

MISS.PFTCH 1010 Only prefetches that miss the L2I are counted

MISS.ALL 1011 All fetches that miss the L2I are counted

ALL.NONE 1100 None is counted

ALL.DMND 1101 Demand fetches that reference L2I are counted

ALL.PFTCH 1110 Prefetches that reference L2I are counted

ALL.ALL 1111 All fetches that reference L2I are counted

Table 4-101. Unit Masks for L2I_L3_REJECTS (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-102. Unit Masks for L2I_READS (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

--- 00xx None is counted

HIT.NONE 0100 None is counted

HIT.DMND 0101 Only demand fetches that hit the L2I are counted

HIT.PFTCH 0110 Only prefetches that hit the L2I are counted

HIT.ALL 0111 All fetches that hit the L2I are counted

MISS.NONE 1000 None is counted

MISS.DMND 1001 Only demand fetches that miss the L2I are counted

MISS.PFTCH 1010 Only prefetches that miss the L2I are counted

MISS.ALL 1011 All fetches that miss the L2I are counted

ALL.NONE 1100 None is counted

ALL.DMND 1101 Demand fetches that reference L2I are counted
Reference Manual for Software Development and Optimization 155

Performance Monitor Events
L2I_RECIRCULATES
• Title: L2I recirculates
• Category: L2 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x7b, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: The number of times a tagged (demand or prefetch) request from IFR to L2I

matches a line marked pending in the L2I cache. This means that L2I has already sent another
request for this same address (but via a different RABID) to L3/BC, and is still waiting for its
data to return. Thus, this new request cannot yet return data to IFR, but a duplicate request to
L3/BC would just be rejected, so the request must enter a loop of waiting for an event (snoop or
fill) which might change the status of the pending line, and then reissuing through the L2I pipe-
line; the cycle repeats until the request no longer hits pending. Note that this event is signalled
every time a demand request reissues, and so it might fire multiple times for a single request
from IFR. The final time the request moves down the L2I pipeline, it also reports either a single
L2I_READS.HIT.DMND(PFTCH) or L2I_READS.MISS.DMND (or
L2I_UC_READS.DMND) event

• NOTE: This event is qualified with IBRP1

ALL.PFTCH 1110 Prefetches that reference L2I are counted

ALL.ALL 1111 All fetches that reference L2I are counted

Table 4-102. Unit Masks for L2I_READS (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-103. Unit Masks for L2I_RECIRCULATES

Extension PMC.umask
[19:16] Description

--- 00xx None is counted

HIT.NONE 0100 None is counted

HIT.DMND 0101 Only demand fetches that hit the L2I are counted

HIT.PFTCH 0110 Only prefetches that hit the L2I are counted

HIT.ALL 0111 All fetches that hit the L2I are counted

MISS.NONE 1000 None is counted

MISS.DMND 1001 Only demand fetches that miss the L2I are counted

MISS.PFTCH 1010 Only prefetches that miss the L2I are counted

MISS.ALL 1011 All fetches that miss the L2I are counted

ALL.NONE 1100 None is counted

ALL.DMND 1101 Demand fetches that reference L2I are counted

ALL.PFTCH 1110 Prefetches that reference L2I are counted

ALL.ALL 1111 All fetches that reference L2I are counted
156 Reference Manual for Software Development and Optimization

Performance Monitor Events
L2I_SPEC_ABORTS
• Title: L2I speculative aborts
• Category: L2 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x7e, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Provides number of speculative aborts. Event counts the number of times a tagged

change-priority-to-demand request from IFR to L2I starts down the L2I pipeline, but L2I finds
that it has already been looked up, and aborts the new lookup. This can occur because, in order to
satisfy demand requests as quickly as possible, L1I starts to look up a demand request without
waiting to check if that request has already been handled (as is possible if it was originally issued
as a prefetch, and later the IFR changes its priority to a demand)

• NOTE: This event is qualified with IBRP1

L2I_SNOOP_HITS
• Title: L2I snoop hits
• Category: L2 Instruction Cache and Prefetch IAR/DAR/OPC: N/N/N
• Event Code: 0x7f, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: The number of times a snoop request to L2I hits a valid line in the L2I cache and

must invalidate that line. The thread ID reported for this event is simply the currently active
thread.

• NOTE: This event is NOT qualified with tags

L2I_UC_READS
• Title: L2I uncacheable reads
• Category: L2 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x79, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Provides number of UC code reads handled by L2I.
• NOTE: This event is qualified with IBRP1.

Table 4-104. Unit Masks for L2I_UC_READS (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

--- 00xx None is counted

HIT.NONE 0100 None is counted

HIT.DMND 0101 Only demand fetches that hit the L2I are counted

HIT.PFTCH 0110 Only prefetches that hit the L2I are counted

HIT.ALL 0111 All fetches that hit the L2I are counted

MISS.NONE 1000 None is counted

MISS.DMND 1001 Only demand fetches that miss the L2I are counted

MISS.PFTCH 1010 Only prefetches that miss the L2I are counted

MISS.ALL 1011 All fetches that miss the L2I are counted

ALL.NONE 1100 None is counted

ALL.DMND 1101 Demand fetches that reference L2I are counted
Reference Manual for Software Development and Optimization 157

Performance Monitor Events
L2I_VICTIMIZATION
• Title: L2I victimizations
• Category: L2 Instruction Cache and Prefetch IAR/DAR/OPC: Y/N/N
• Event Code: 0x7a, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: The number of times a tagged demand or prefetch request from IFR to L2I misses

in the L2I cache, and needs to replace a valid line. The request also reports a single
L2I_READS.MISS.DMND event.

• NOTE: This event is qualified with IBRP1

L3_INSERTS
• Title: L3 Cache Lines inserts
• Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xda, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of valid L3 lines that have been written to the L3 due to a L2

miss allocation.
• NOTE: This event may be qualified by MESI. If this event is filtered by the PMC’s MESI bits,

the filter will apply to the current cache line rather than the incoming line. To measure all events,
the MESI filter must be set to b1111.

L3_LINES_REPLACED
• Title: L3 Cache Lines Replaced
• Category: L3 Unified Cache IAR/DAR/OPC: N/N/N
• Event Code: 0xdf, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of valid L3 lines (dirty victims) that have been replaced. Exclu-

sive clean/shared and clean castouts may also be counted depending on platform specific set-
tings.

• NOTE: This event may be qualified by MESI. If this event is filtered by the PMC’s MESI bits,
the filter will apply to the current cache line rather than the incoming line.To measure all events,
the MESI filter must be set to b1111.

L3_MISSES
• Title: L3 Misses
• Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xdc, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of L3 cache misses. Includes misses caused by instruction

fetch, data read/write, L2D write backs and the HPW.

ALL.PFTCH 1110 Prefetches that reference L2I are counted

ALL.ALL 1111 All fetches that reference L2I are counted

Table 4-104. Unit Masks for L2I_UC_READS (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description
158 Reference Manual for Software Development and Optimization

Performance Monitor Events
L3_READS
• Title: L3 Reads
• Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xdd, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of L3 cache read accesses.
• NOTE: This event may be qualified by MESI.To measure all events, the MESI filter must be

set to b1111.

L3_REFERENCES
• Title: L3 References
• Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xdb, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of L3 accesses. Includes instruction fetch/prefetch, data

read/write and L2D write backs.

Table 4-105. Unit Masks for L3_READS

Extension PMC.umask
[19:16] Description

--- b0000 (* nothing will be counted *)

DINST_FETCH.HIT b0001 L3 Demand Instruction Fetch Hits

DINST_FETCH.MISS b0010 L3 Demand Instruction Fetch Misses

DINST_FETCH.ALL b0011 L3 Demand Instruction References

--- b0100 (* nothing will be counted *)

INST_FETCH.HIT b0101 L3 Instruction Fetch and Prefetch Hits

INST_FETCH.MISS b0110 L3 Instruction Fetch and Prefetch Misses

INST_FETCH.ALL b0111 L3 Instruction Fetch and Prefetch References

--- b1000 (* nothing will be counted *)

DATA_READ.HIT b1001 L3 Load Hits (excludes reads for ownership used to satisfy
stores)

DATA_READ.MISS b1010 L3 Load Misses (excludes reads for ownership used to
satisfy stores)

DATA_READ.ALL b1011 L3 Load References (excludes reads for ownership used to
satisfy stores)

--- b1100 (* nothing will be counted *)

ALL.HIT b1101 L3 Read Hits

ALL.MISS b1110 L3 Read Misses

ALL.ALL b1111 L3 Read References
Reference Manual for Software Development and Optimization 159

Performance Monitor Events
L3_WRITES
• Title: L3 Writes
• Category: L3 Unified Cache IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xde, Max. Inc/Cyc: 1, MT Capture Type: F
• Definition: Counts the number of L3 cache write accesses.
• NOTE: This event may be qualified by MESI. If this event is filtered by the PMC’s MESI bits,

the filter will apply to the current cache line rather than the incoming line.To measure all events,
the MESI filter must be set to b1111.

LOADS_RETIRED
• Title: Retired Loads
• Category: Instruction Execution/L1D Cache Set 3 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xcd, Max. Inc/Cyc: 4, MT Capture Type: A
• Definition: Counts the number of retired loads, excluding predicated off loads. The count

includes integer, floating-point, RSE, semaphores, VHPT, uncacheable loads and check loads
(ld.c) which missed in ALAT and L1D (because this is the only time this looks like any other
load). Also included are loads generated by squashed HPW walks.

• NOTE: This is a restricted set 3 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

Table 4-106. Unit Masks for L3_WRITES

Extension PMC.umask
[19:16] Description

--- b00xx (* nothing will be counted *)

--- b0100 (* nothing will be counted *)

DATA_WRITE.HIT b0101 L3 Store Hits (excludes L2D write backs, includes L3 read
for ownership requests that satisfy stores)

DATA_WRITE.MISS b0110 L3 Store Misses (excludes L2D write backs, includes L3
read for ownership requests that satisfy stores)

DATA_WRITE.ALL b0111 L3 Store References (excludes L2D write backs, includes L3
read for ownership requests that satisfy stores)

--- b1000 (* nothing will be counted *)

L2_WB.HIT b1001 L2D Write Back Hits

L2_WB.MISS b1010 L2D Write Back Misses

L2_WB.ALL b1011 L2DWrite Back References

--- b1100 (* nothing will be counted *)

ALL.HIT b1101 L3 Write Hits

ALL.MISS b1110 L3 Write Misses

ALL.ALL b1111 L3 Write References
160 Reference Manual for Software Development and Optimization

Performance Monitor Events
LOADS_RETIRED_INTG
• Title: Integer loads retired
• Category: Instruction Execution/L1D Cache Set 3 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xd8, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of retired integer loads.
• NOTE: This is a restricted set 6 L1D Cache event. In order to measure this event, one of the

events in this set must be measured by PMD5.

MEM_READ_CURRENT
• Title: Current Mem Read Transactions On Bus
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x89, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of current memory read transactions (BRC) on the bus.

MISALIGNED_LOADS_RETIRED
• Title: Retired Misaligned Load Instructions
• Category: Instruction Execution/L1D Cache Set 3 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xce, Max. Inc/Cyc: 4, MT Capture Type: A
• Definition: Counts the number of retired misaligned load instructions, excluding those that

were predicated off. It includes integer, floating-point loads, semaphores and check loads
(ld.c) which missed in ALAT and L1D (the only time this looks like any other load).

• NOTE: If a misaligned load takes a trap then it will not be counted here since only retired loads
are counted. PSR.ac = 0 and not crossing the 0-7 or 8-15 byte boundary is the only time it will
not trap. This is a restricted set 3 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

MISALIGNED_STORES_RETIRED
• Title: Retired Misaligned Store Instructions
• Category: Instruction Execution/L1D Cache Set 4 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xd2, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of retired misaligned store instructions, excluding those that

were predicated off. It includes integer, floating-point, semaphores and uncacheable stores. Pred-
icated off operations are not counted.

• NOTE: If a misaligned store takes a trap then it will not be counted here since only retired
stores are counted. PSR.ac = 0 and not crossing the 0-15 byte boundary of a WB page is the

Table 4-107. Unit Masks for MEM_READ_CURRENT

Extension PMC.umask
[19:16] Description

--- bxx00 (* illegal selection *)

IO bxx01 non-CPU priority agents

--- bxx10 (* illegal selection *)

ANY bxx11 CPU or non-CPU (all transactions).
Reference Manual for Software Development and Optimization 161

Performance Monitor Events
only time it will not trap. This is a restricted set 4 L1D Cache event. In order to measure this
event, one of the events in this set must be measured by PMD5. Only ports 2 and 3 are counted.

NOPS_RETIRED
• Title: Retired NOP Instructions
• Category: Instruction Execution IAR/DAR/OPC: YN/Y
• Event Code: 0x50, Max. Inc/Cyc: 6, MT Capture Type: A
• Definition: Provides information on number of retired nop.i, nop.m, and nop.b,nop.f

instructions, excluding nop instructions that were predicated off.

PREDICATE_SQUASHED_RETIRED
• Title: Instructions Squashed Due to Predicate Off
• Category: Instruction Execution IAR/DAR/OPC: Y/N/Y
• Event Code: 0x51, Max. Inc/Cyc: 6, MT Capture Type: A
• Definition: Provides information on number of instructions squashed due to a false qualifying

predicate. Includes all non-B-syllable instructions which reached retirement with a false predi-
cate.

RSE_CURRENT_REGS_2_TO_0
• Title: Current RSE Registers (Bits 2:0)
• Category: RSE Events IAR/DAR/OPC: N/N/N
• Event Code: 0x2b, Max. Inc/Cyc: 7, MT Capture Type: A
• Definition: Counts the number of current RSE registers before an RSE_EVENT_RETIRED

occurred. The Montecito processor can have a total of 96 per cycle. The lowest 3 bits are stored
in this counter (bits 2:0).

RSE_CURRENT_REGS_5_TO_3
• Title: Current RSE Registers (Bits 5:3)
• Category: RSE Events IAR/DAR/OPC: N/N/N
• Event Code: 0x2a, Max. Inc/Cyc: 7, MT Capture Type: A
• Definition: Counts the number of current RSE registers before an RSE_EVENT_RETIRED

occurred. The Montecito processor can have a total of 96 per cycle. The middle 3 bits are stored
in this counter (bits 5:3).

RSE_CURRENT_REGS_6
• Title: Current RSE Registers (Bit 6)
• Category: RSE Events IAR/DAR/OPC: N/N/N
• Event Code: 0x26, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of current RSE registers before an RSE_EVENT_RETIRED

occurred. The Montecito processor can have a total of 96 per cycle. The highest 1 bit is stored in
this counter (bit 6).
162 Reference Manual for Software Development and Optimization

Performance Monitor Events
RSE_DIRTY_REGS_2_TO_0
• Title: Dirty RSE Registers (Bits 2:0)
• Category: RSE Events IAR/DAR/OPC: N/N/N
• Event Code: 0x29, Max. Inc/Cyc: 7, MT Capture Type: A
• Definition: Counts the number of dirty RSE registers before an RSE_EVENT_RETIRED

occurred. The Montecito processor can have a total of 96 per cycle. The lowest 3 bits are stored
in this counter (bits 2:0).

RSE_DIRTY_REGS_5_TO_3
• Title: Dirty RSE Registers (Bits 5:3)
• Category: RSE Events IAR/DAR/OPC: N/N/N
• Event Code: 0x28, Max. Inc/Cyc: 7, MT Capture Type: A
• Definition: Counts the number of dirty RSE registers before an RSE_EVENT_RETIRED

occurred. The Montecito processor can have a total of 96 per cycle. The middle 3 bits are stored
in this counter (bits 5:3).

RSE_DIRTY_REGS_6
• Title: Dirty RSE Registers (Bit 6)
• Category: RSE Events IAR/DAR/OPC: N/N/N
• Event Code: 0x24, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of dirty RSE registers before an RSE_EVENT_RETIRED

occurred. The Montecito processor can have a total of 96 per cycle. The highest one bit is stored
in this counter (bit 6).

RSE_EVENT_RETIRED
• Title: Retired RSE Operations
• Category: RSE Events IAR/DAR/OPC: N/N/N
• Event Code: 0x32, Max. Inc/Cyc: 1, MT Capture Type: A

• Definition: Counts the number of retired RSE operations (i.e. alloc, br.ret, br.call,
loadrs, flushrs, cover, and rfi - see NOTE). This event is an indication of when instructions which
affect the RSE are retired (which may or may not cause activity to memory subsystem).

• NOTE: The only time 2 RSE events can be retired in 1 clock are flushrs/call or flushrs/return
bundles. These corner cases are counted as 1 event instead of 2 since this event is used to calcu-
late the average number of current/dirty/invalid registers. rfi instructions will be included only if
ifsvalid=1; which can be set either by using the cover instruction prior to the rfi, or explicitly set-
ting the valid bit.
Reference Manual for Software Development and Optimization 163

Performance Monitor Events
RSE_REFERENCES_RETIRED
• Title: RSE Accesses
• Category: RSE Events IAR/DAR/OPC: Y/Y/Y
• Event Code: 0x20, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of retired RSE loads and stores (Every time RSE.bof reaches

RSE.storereg; otherwise known as mandatory events including rnat fills & spills). This event is
an indication of when RSE causes activity to memory subsystem.

• NOTE: Privilege level for DBR tags is determined by the RSC register; but privilege level for
IBR tags is determined by PSR.cpl. RSE traffic which is caused by rfi will be tagged by the tar-
get of the rfi.

SERIALIZATION_EVENTS
• Title: Number of srlz.i Instructions
• Category: System Events IAR/DAR/OPC: N/N/N
• Event Code: 0x53, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of srlz.i instructions (because it causes a microtrap and an xpn-

flush fires)

SI_CCQ_COLLISIONS
• Title: Clean Castout Queue Collisions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xa8, Max. Inc/Cyc: 2, MT Capture Type: C
• Definition: Counts the number of address collisions between a CCQ entry and incoming FSB

transaction.

Table 4-108. Unit Masks for RSE_REFERENCES_RETIRED

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

LOAD bxx01 Only RSE loads will be counted.

STORE bxx10 Only RSE stores will be counted.

ALL bxx11 Both RSE loads and stores will be counted.

Table 4-109. Unit Masks for SI_CCQ_COLLISIONS

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core
164 Reference Manual for Software Development and Optimization

Performance Monitor Events
SI_CCQ_INSERTS
• Title: Clean Castout Queue Insertions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xa5, Max. Inc/Cyc: 2, MT Capture Type: S
• Definition: Counts insertions into the CCQ.

SI_CCQ_LIVE_REQ_HI
• Title: Clean Castout Queue Requests (upper bit)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xa7, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of live CCQ requests. The Montecito processor can have a total

of 8 per cycle. The upper bit is stored in this counter.

SI_CCQ_LIVE_REQ_LO
• Title: Clean Castout Queue Requests (lower three bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xa6, Max. Inc/Cyc: 7, MT Capture Type: C
• Definition: Counts the number of live CCQ requests. The Montecito processor can have a total

of 8 per cycle. The lower three bits are stored in this counter.

Table 4-110. Unit Masks for SI_CCQ_INSERTS

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core

Table 4-111. Unit Masks for SI_CCQ_LIVE_REQ_HI

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core

Table 4-112. Unit Masks for SI_CCQ_LIVE_REQ_LO

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core
Reference Manual for Software Development and Optimization 165

Performance Monitor Events
SI_CYCLES
• Title: SI Cycles
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x8e, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts SI clock cycles. SI clock is: bus_ratio * bus_clock.

SI_IOQ_COLLISIONS
• Title: In Order Queue Collisions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xaa, Max. Inc/Cyc: 2, MT Capture Type: C
• Definition: Counts the number of address collisions between an IOQ entry and outgoing FSB

transaction.

SI_IOQ_LIVE_REQ_HI
• Title: Inorder Bus Queue Requests (upper bit)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x98, Max. Inc/Cyc: 2, MT Capture Type: C
• Definition: Counts the number of live in-order bus requests. The Montecito processor can have

a total of 8 per cycle. The upper bit is stored in this counter.

SI_IOQ_LIVE_REQ_LO
• Title: Inorder Bus Queue Requests (lower three bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x97, Max. Inc/Cyc: 3, MT Capture Type: C
• Definition: Counts the number of live in-order bus requests. The Montecito processor can have

a total of 8 per cycle. The lower three bits are stored in this counter.

SI_RQ_INSERTS
• Title: Request Queue Insertions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x9e, Max. Inc/Cyc: 2, MT Capture Type: S
• Definition: Counts insertions into the RQ.

Table 4-113. Unit Masks for SI_RQ_INSERTS

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core
166 Reference Manual for Software Development and Optimization

Performance Monitor Events
SI_RQ_LIVE_REQ_HI
• Title: Request Queue Requests (upper bit)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xa0, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of live RQ requests. The Montecito processor can have a total

of 8 per cycle. The upper bit is stored in this counter..

SI_RQ_LIVE_REQ_LO
• Title: Request Queue Requests (lower three bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0x9f, Max. Inc/Cyc: 7, MT Capture Type: C
• Definition: Counts the number of live RQ requests. The Montecito processor can have a total

of 8 per cycle. The lower three bits are stored in this counter.

SI_SCB_INSERTS
• Title: Snoop Coalescing Buffer Insertions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xab, Max. Inc/Cyc: 4, MT Capture Type: C
• Definition: Counts the number of insertions into the snoop coalescing buffer as specified with

the following Unit Mask. This is the ‘raw’ coherency answer of each core before being logically
combined (see SCB_SIGNOFFS below).

Table 4-114. Unit Masks for SI_RQ_LIVE_REQ_HI

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core

Table 4-115. Unit Masks for SI_RQ_LIVE_REQ_LO

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core

Table 4-116. Unit Masks for SI_SCB_INSERTS (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

MISS.EITHER b00x0 count MISS snoop signoffs (plus backsnoop inserts) from
either cpu core

MISS.SELF b00x1 count MISS snoop signoffs (plut backsnoop inserts) from
‘this’ cpu core

HIT.EITHER b01x0 count HIT snoop signoffs from either cpu core

HIT.SELF b01x1 count HIT snoop signoffs from ‘this’ cpu core

HITM.EITHER b10x0 count HITM snoop signoffs from either cpu core
Reference Manual for Software Development and Optimization 167

Performance Monitor Events
SI_SCB_LIVE_REQ_HI
• Title: Snoop Coalescing Buffer Requests (upper bit)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xad, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of live SCB requests. The Montecito processor can have a total

of 8 per cycle. The upper bit is stored in this counter.

SI_SCB_LIVE_REQ_LO
• Title: Snoop Coalescing Buffer Requests (lower three bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xac, Max. Inc/Cyc: 7, MT Capture Type: C
• Definition: Counts the number of live SCB requests. The Montecito processor can have a total

of 8 per cycle. The lower three bits are stored in this counter.

HITM.SELF b10x1 count HITM snoop signoffs from ‘this’ cpu core

ALL.EITHER b11x0 count all snoop signoffs (plus backsnoop inserts) from either
cpu core

ALL.SELF b11x1 count all snoop signoffs (plut backsnoop inserts) from ‘this’
cpu core

Table 4-116. Unit Masks for SI_SCB_INSERTS (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-117. Unit Masks for SI_SCB_LIVE_REQ_HI

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core

Table 4-118. Unit Masks for SI_SCB_LIVE_REQ_LO

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core
168 Reference Manual for Software Development and Optimization

Performance Monitor Events
SI_SCB_SIGNOFFS
• Title: Snoop Coalescing Buffer Coherency Signoffs
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xae, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of snoop signoffs driven from the snoop coalescing buffer as

specified with the following Unit Mask. This is the ‘final’ coherency answer driven to FSB
determined once the coherency answer from each core is collected.

SI_WAQ_COLLISIONS
• Title: Write Address Queue Collisions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xa4, Max. Inc/Cyc: 1, MT Capture Type: S
• Definition: Counts the number of address collisions between a WAQ entry and incoming FSB

transaction.

SI_WDQ_ECC_ERRORS
• Title: Write Data Queue ECC Errors
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xaf, Max. Inc/Cyc: 2, MT Capture Type: S
• Definition: Counts the number of ECC errors detected in the WDQ. Qualified by the following

Unit Mask.

Table 4-119. Unit Masks for SI_SCB_SIGNOFFS

Extension PMC.umask
[19:16] Description

MISS b00xx count MISS snoop signoffs

HIT b01xx count HIT snoop signoffs

HITM b10xx count HITM snoop signoffs

ALL b11xx count all snoop signoffs

Table 4-120. Unit Masks for SI_CCQ_COLLISIONS

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core

Table 4-121. Unit Masks for SI_WDQ_ECC_ERRORS (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

SGL.EITHER b00x0 count single-bit ecc errors from either cpu core

SGL.SELF b00x1 count single-bit ecc errors from ‘this’ cpu core

DBL.EITHER b01x0 count double-bit ecc errors from either cpu core

DBL.SELF b01x1 count double-bit ecc errors from ‘this’ cpu core
Reference Manual for Software Development and Optimization 169

Performance Monitor Events
SI_WRITEQ_INSERTS
• Title: Write Queue Insertions
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xa1, Max. Inc/Cyc: 2, MT Capture Type: S
• Definition: Counts insertions into the WRITEQ. Qualified by the following Unit Mask.

ALL.EITHER b1xx0 count all ecc errors from either cpu core

ALL.SELF b1xx1 count all ecc errors from ‘this’ cpu core

Table 4-121. Unit Masks for SI_WDQ_ECC_ERRORS (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-122. Unit Masks for SI_WRITEQ_INSERTS

Extension PMC.umask
[19:16] Description

ALL.EITHER b0000 count all types of insertions into the write queue from either
cpu core

ALL.SELF b0001 count all types of insertions into the write queue from ‘this’
cpu core

IWB.EITHER b0010 count implicit write back insertions into the write queue from
either cpu core

IWB.SELF b0011 count implicit write back insertions into the write queue from
‘this’ cpu core

EWB.EITHER b0100 count explicit write back insertions into the write queue from
either cpu core

EWB.SELF b0101 count explicit write back insertions into the write queue from
‘this’ cpu core

WC1_8A.EITHER b0110 count WC (size 1 thru 8 bytes) insertions into the write
queue from either cpu core (addr[3] = 0)

WC1_8A.SELF b0111 count WC (size 1 thru 8 bytes) insertions into the write
queue from ‘this’ cpu core (addr[3] = 0)

WC16.EITHER b1000 count WC (size 16 bytes) insertions into the write queue
from either cpu core

WC16.SELF b1001 count WC (size 16 bytes) insertions into the write queue
from ‘this’ cpu core

WC32.EITHER b1010 count WC (size 32 bytes) insertions into the write queue
from either cpu core

WC32.SELF b1011 count WC (size 32 bytes) insertions into the write queue
from ‘this’ cpu core

NEWB.EITHER b1100 count ‘nuked’ explicit write back insertions into the write
queue from either cpu core

NEWB.SELF b1101 count ‘nuked’ explicit write back insertions into the write
queue from ‘this’ cpu core

WC1_8B.EITHER b1110 count WC (size 1 thru 8 bytes) insertions into the write
queue from either cpu core (addr[3] = 1)

WC1_8B.SELF b1111 count WC (size 1 thru 8 bytes) insertions into the write
queue from ‘this’ cpu core (addr[3] = 1)
170 Reference Manual for Software Development and Optimization

Performance Monitor Events
SI_WRITEQ_LIVE_REQ_HI
• Title: Write Queue Requests (upper bit)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xa3, Max. Inc/Cyc: 1, MT Capture Type: C
• Definition: Counts the number of live WRITEQ requests. The Montecito processor can have a

total of 8 per cycle. The upper bit is stored in this counter.

SI_WRITEQ_LIVE_REQ_LO
• Title: Write Queue Requests (lower three bits)
• Category: Front-Side Bus IAR/DAR/OPC: N/N/N
• Event Code: 0xa2, Max. Inc/Cyc: 7, MT Capture Type: C
• Definition: Counts the number of live WRITEQ requests. The Montecito processor can have a

total of 8 per cycle. The lower three bits are stored in this counter.

SPEC_LOADS_NATTED
• Title: Number of speculative inter loads that are NaTd
• Category: Sphdeculation event IAR/DAR/OPC: Y/Y/N
• Event Code: 0xd9, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts number of integer speculative loads that have been NaTed. This event has

following umasks

Table 4-123. Unit Masks for SI_WRITEQ_LIVE_REQ_HI

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core

Table 4-124. Unit Masks for SI_WRITEQ_LIVE_REQ_LO

Extension PMC.umask
[19:16] Description

EITHER bxxx0 transactions initiated by either cpu core

SELF bxxx1 transactions initiated by ‘this’ cpu core

Table 4-125. Unit Masks for SPEC_LOADS_NATTED (Sheet 1 of 2)

Extension PMC.umask
[19:16] Description

ALL b0000 Count all NaT’d loads

VHPT_MISS b0001 Only loads NaT’d due to VHPT miss

DEF_TLB_MISS b0010 Only loads NaT’d due to deferred TLB misses

DEF_TLB_FAULT b0011 Only loads NaT’d due to deferred TLB faults
Reference Manual for Software Development and Optimization 171

Performance Monitor Events
STORES_RETIRED
• Title: Retired Stores
• Category: Instruction Execution/L1D Cache Set 4 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xd1, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of retired stores, excluding those that were predicated off. The

count includes integer, floating-point, semaphore, RSE, VHPT, uncacheable stores.
• NOTE: This is a restricted set 4 L1D Cache event. In order to measure this event, one of the

events in this set must be measured by PMD5. Only ports 2 and 3 are counted.

SYLL_NOT_DISPERSED
• Title: Syllables Not Dispersed
• Category: Instruction Dispersal Events IAR/DAR/OPC: Y/N/N
• Event Code: 0x4e, Max. Inc/Cyc: 5, MT Capture Type: A
• Definition: Counts the number of syllables not dispersed due to all reasons except stalls. A unit

mask can break this down to 1 of 4 possible components.

NAT_CNSM b0100 Only loads NaT’d due to NaT consumption

DEF_PSR_ED b0101 Only loads NaT’d due to effect of PSR.ed

Table 4-125. Unit Masks for SPEC_LOADS_NATTED (Sheet 2 of 2)

Extension PMC.umask
[19:16] Description

Table 4-126. Unit Masks for SYLL_NOT_DISPERSED

Extension PMC.umask
[19:16] Description

EXPL bxxx1 Count syllables not dispersed due to explicit stop bits. These
consist of programmer specified architected S-bit and
templates 1 and 5. Dispersal takes a 6-syllable (3-syllable)
hit for every template 1/5 in bundle 0(1). Dispersal takes a
3-syllable (0 syllable) hit for every S-bit in bundle 0(1)

IMPL bxx1x Count syllables not dispersed due to implicit stop bits. These
consist of all of the non-architected stop bits (asymmetry,
oversubscription, implicit). Dispersal takes a 6-syllable
(3-syllable) hit for every implicit stop bits in bundle 0(1).

FE bx1xx Count syllables not dispersed due to front-end not providing
valid bundles or providing valid illegal templates. Dispersal
takes a 3-syllable hit for every invalid bundle or valid illegal
template from front-end. Bundle 1 with front-end fault, is
counted here (3-syllable hit).

MLX b1xxx Count syllables not dispersed due to MLX bundle and
resteers to non-0 syllable. Dispersal takes a 1 syllable hit for
each MLX bundle. Dispersal could take 0-2 syllable hit de
pending on which syllable we re-steer to. Bundle 1 with
front-end fault which is split, is counted here (0-2 syllable
hit).

ALL b1111 Count all syllables not dispersed. NOTE: Any combination
b0000-b1111 is valid.
172 Reference Manual for Software Development and Optimization

Performance Monitor Events
SYLL_OVERCOUNT
• Title: Number of Overcounted Syllables.
• Category: Instruction Dispersal Events IAR/DAR/OPC: Y/N/N
• Event Code: 0x4f, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of syllables which were overcounted in explicit and/or implicit

stop bits portion of SYLL_NOT_DISPERSED.

THREAD_SWITCH_CYCLE
• Title: Thread switch overhead cycles.
• Category: Thread Switch Events IAR/DAR/OPC: N/N/N
• Event Code: 0x0e, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts various cycle overhead related to thread switches.

THREAD_SWITCH_EVENTS
• Title: Thread switch events.
• Category: Thread Switch Events IAR/DAR/OPC: N/N/N
• Event Code: 0x0c, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of thread switches and their causes.

Table 4-127. Unit Masks for SYLL_OVERCOUNT

Extension PMC.umask
[19:16] Description

--- bxx00 (* nothing will be counted *)

EXPL bxx01 Only syllables overcounted in the explicit bucket

IMPL bxx10 Only syllables overcounted in the implicit bucket

ALL bxx11 syllables overcounted in implicit & explicit bucket

Table 4-128. Unit Masks for THREAD_SWITCH_CYCLE

Extension PMC.umask
[19:16] Description

--- bx000 (* nothing will be counted *)

CRAB bx001 Cycles TSs are stalled due to CRAB operation

L2D bx010 Cycles TSs are stalled due to L2D return operation

ANYSTALL bx011 Cycles TSs are stalled due to any reason

PCR bx100 Cycles we run with PCR.sd set

--- bx101 (* nothing will be counted *)

ALL_GATED bx110 Cycles TSs are gated due to any reason
NOTE: THREAD_SWITCH_GATED event is available to
monitor the number of times TSs have been gated.

TOTAL bx111 Total time from TS opportunity is seized to TS happens.
Reference Manual for Software Development and Optimization 173

Performance Monitor Events
THREAD_SWITCH_GATED
• Title: Thread switches gated
• Category: Thread Switch Events IAR/DAR/OPC: N/N/N
• Event Code: 0x0d, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts the number of thread switches gated and their causes.

THREAD_SWITCH_STALL
• Title: Thread Switch Stall
• Category: Thread Switch Events IAR/DAR/OPC: N/N/N
• Event Code: 0x0f, Max. Inc/Cyc: 1, MT Capture Type: A
• Definition: Counts how many times the processor is stalled more than specified number of cpu

cycles in umask field before deciding to do a thread switch. This is done by counting cycles from
the last instruction retired to the point the processor decided to pend a TS.

Table 4-129. Unit Masks for THREAD_SWITCH_EVENTS

Extension PMC.umask
[19:16] Description

MISSED bx000 TS opportunities missed

L3MISS bx001 TSs due to L3 miss

TIMER bx010 TSs due to time out

HINT bx011 TSs due to hint instruction

LP bx100 TSs due to low power operation

DBG bx101 TSs due to debug operations

--- bx110 (* count is undefined *)

ALL bx111 All taken TSs

Table 4-130. Unit Masks for THREAD_SWITCH_GATED

Extension PMC.umask
[19:16] Description

--- bx000 (* nothing will be counted *)

LP bx001 TSs gated due to LP

--- bx010 (* nothing will be counted *)

--- bx011 (* nothing will be counted *)

PIPE bx100 Gated due to pipeline operations

FWDPRO bx101 Gated due to forward progress reasons

--- bx110 (* nothing will be counted *)

ALL bx111 TSs gated for any reason
174 Reference Manual for Software Development and Optimization

Performance Monitor Events
UC_LOADS_RETIRED
• Title: Retired Uncacheable Loads
• Category: Instruction Execution/L1D Cache Set 3 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xcf, Max. Inc/Cyc: 4, MT Capture Type: A
• Definition: Counts the number of retired uncacheable load instructions, excluding those that

were predicated off. It includes integer, floating-point, semaphores, RSE, and VHPT loads, and
check loads (ld.c) which missed in ALAT and L1D (the only time this looks like any other
load).

• NOTE: This is a restricted set 3 L1D Cache event. In order to measure this event, one of the
events in this set must be measured by PMD5.

UC_STORES_RETIRED
• Title: Retired Uncacheable Stores
• Category: Instruction Execution/L1D Cache Set 4 IAR/DAR/OPC: Y/Y/Y
• Event Code: 0xd0, Max. Inc/Cyc: 2, MT Capture Type: A
• Definition: Counts the number of retired uncacheable store instructions. It includes integer,

floating-point, RSE, and uncacheable stores. (only on ports 2 and 3).
• NOTE: This is a restricted set 4 L1D Cache event. In order to measure this event, one of the

events in this set must be measured by PMD5.

§

Table 4-131. Unit Masks for THREAD_SWITCH_STALL

Extension PMC.umask
[19:16] Description

GTE_4 b0000 >= 4 cycles (Any latency)

GTE_8 b0001 >= 8 cycles

GTE_16 b0010 >= 16 cycles

GTE_32 b0011 >= 32 cycles

GTE_64 b0100 >= 64 cycles

GTE_128 b0101 >= 128 cycles

GTE_256 b0110 >= 256 cycles

GTE_512 b0111 >= 512 cycles

GTE_1024 b1000 >= 1024 cycles

GTE_2048 b1001 >= 2048 cycles

GTE_4096 b1010 >= 4096 cycles

--- b1010 -b1111 (* nothing will be counted *)
Reference Manual for Software Development and Optimization 175

Performance Monitor Events
176 Reference Manual for Software Development and Optimization

	1 Introduction
	1.1 Terminology
	1.2 Related Documentation

	2 The Dual-Core Itanium 2 Processor
	2.1 Overview
	2.1.1 Identifying the Dual-Core Itanium 2 Processor
	2.1.2 Introducing Montecito

	2.2 New Instructions
	2.3 Core
	2.3.1 Instruction Slot to Functional Unit Mapping
	2.3.2 Instruction Latencies and Bypasses
	2.3.3 Caches and Cache Management Changes

	2.4 Threading
	2.4.1 Sharing Core Resources
	2.4.2 Tailoring Thread Switch Behavior
	2.4.3 Sharing Cache and Memory Resources

	2.5 Dual Cores
	2.5.1 Fairness and Arbitration

	2.6 Intel® Virtualization Technology
	2.7 Tips and Tricks
	2.7.1 Cross Modifying Code
	2.7.2 ld.bias and lfetch.excl
	2.7.3 L2D Victimization Optimization
	2.7.4 Instruction Cache Coherence Optimization

	2.8 IA-32 Execution
	2.9 Brand Information

	3 Performance Monitoring
	3.1 Introduction to Performance Monitoring
	3.2 Performance Monitor Programming Models
	3.2.1 Workload Characterization
	3.2.2 Profiling
	3.2.3 Event Qualification
	3.2.4 References

	3.3 Performance Monitor State
	3.3.1 Performance Monitor Control and Accessibility
	3.3.2 Performance Counter Registers
	3.3.3 Performance Monitor Event Counting Restrictions Overview
	3.3.4 Performance Monitor Overflow Status Registers (PMC0,1,2,3)
	3.3.5 Instruction Address Range Matching
	3.3.6 Opcode Match Check (PMC32,33,34,35,36)
	3.3.7 Data Address Range Matching (PMC41)
	3.3.8 Instruction EAR (PMC37/PMD32,33,36)
	3.3.9 Data EAR (PMC40, PMD32,33,36)
	3.3.10 Execution Trace Buffer (PMC39,42,PMD48-63,38,39)
	3.3.11 Interrupts
	3.3.12 Processor Reset, PAL Calls, and Low Power State

	4 Performance Monitor Events
	4.1 Introduction
	4.2 Categorization of Events
	4.2.1 Hyper-Threading and Event Types

	4.3 Basic Events
	4.4 Instruction Dispersal Events
	4.5 Instruction Execution Events
	4.6 Stall Events
	4.7 Branch Events
	4.8 Memory Hierarchy
	4.8.1 L1 Instruction Cache and Prefetch Events
	4.8.2 L1 Data Cache Events
	4.8.3 L2 Instruction Cache Events
	4.8.4 L2 Data Cache Events
	4.8.5 L3 Cache Events

	4.9 System Events
	4.10 TLB Events
	4.11 System Bus Events
	4.11.1 System Bus Conventions
	4.11.2 Extracting Memory Latency from Montecito Performance Counters

	4.12 RSE Events
	4.13 Hyper-Threading Events
	4.14 Performance Monitors Ordered by Event Code
	4.15 Performance Monitor Event List
	ALAT_CAPACITY_MISS
	BACK_END_BUBBLE
	BE_BR_MISPRED_DETAIL
	BE_EXE_BUBBLE
	BE_FLUSH_BUBBLE
	BE_L1D_FPU_BUBBLE
	BE_LOST_BW_DUE_TO_FE
	BE_RSE_BUBBLE
	BR_MISPRED_DETAIL
	BR_MISPRED_DETAIL2
	BR_PATH_PRED
	BR_PATH_PRED2
	BUS_ALL
	BUS_B2B_DATA_CYCLES
	BUS_DATA_CYCLE
	BUS_HITM
	BUS_IO
	BUS_MEMORY
	BUS_MEM_READ
	BUS_RD_DATA
	BUS_RD_HIT
	BUS_RD_HITM
	BUS_RD_INVAL_BST_HITM
	BUS_RD_INVAL_HITM
	BUS_RD_IO
	BUS_RD_PRTL
	BUS_SNOOP_STALL_CYCLES
	BUS_WR_WB
	CPU_CPL_CHANGES
	CPU_OP_CYCLES
	CPU_OP_CYCLES_HALTED
	DATA_DEBUG_REGISTER_FAULT
	DATA_DEBUG_REGISTER_MATCHES
	DATA_EAR_EVENTS
	DATA_REFERENCES_SET0
	DATA_REFERENCES_SET1
	DISP_STALLED
	DTLB_INSERTS_HPW
	ENCBR_MISPRED_DETAIL
	ER_BKSNP_ME_ACCEPTED
	ER_BRQ_LIVE_REQ_HI
	ER_BRQ_LIVE_REQ_LO
	ER_BRQ_REQ_INSERTED
	ER_MEM_READ_OUT_HI
	ER_MEM_READ_OUT_LO
	ER_REJECT_ALL_L1_REQ
	ER_REJECT_ALL_L1D_REQ
	ER_REJECT_ALL_L1I_REQ
	ER_SNOOPQ_REQ_HI
	ER_SNOOPQ_REQ_LO
	ETB_EVENT
	FE_BUBBLE
	FE_LOST_BW
	FP_FAILED_FCHKF
	FP_FALSE_SIRSTALL
	FP_FLUSH_TO_ZERO
	FP_OPS_RETIRED
	FP_TRUE_SIRSTALL
	HPW_DATA_REFERENCES
	IA64_INST_RETIRED
	IA64_TAGGED_INST_RETIRED
	IDEAL_BE_LOST_BW_DUE_TO_FE
	INST_CHKA_LDC_ALAT
	INST_DISPERSED
	INST_FAILED_CHKA_LDC_ALAT
	INST_FAILED_CHKS_RETIRED
	ISB_BUNPAIRS_IN
	ITLB_MISSES_FETCH
	L1DTLB_TRANSFER
	L1D_READS_SET0
	L1D_READS_SET1
	L1D_READ_MISSES
	L1ITLB_INSERTS_HPW
	L1I_EAR_EVENTS
	L1I_FETCH_ISB_HIT
	L1I_FETCH_RAB_HIT
	L1I_FILLS
	L1I_PREFETCHES
	L1I_PREFETCH_STALL
	L1I_PURGE
	L1I_PVAB_OVERFLOW
	L1I_RAB_ALMOST_FULL
	L1I_RAB_FULL
	L1I_READS
	L1I_SNOOP
	L1I_STRM_PREFETCHES
	L2DTLB_MISSES
	L2D_BAD_LINES_SELECTED
	L2D_BYPASS
	L2D_FILLB_FULL
	L2D_FILL_MESI_STATE
	L2D_FORCE_RECIRC
	L2D_INSERT_HITS
	L2D_INSERT_MISSES
	L2D_ISSUED_RECIRC_OZQ_ACC
	L2D_L3ACCESS_CANCEL
	L2D_MISSES
	L2D_OPS_ISSUED
	L2D_OZDB_FULL
	L2D_OZQ_ACQUIRE
	L2D_OZQ_CANCELS0
	L2D_OZQ_CANCELS1
	L2D_OZQ_FULL
	L2D_OZQ_RELEASE
	L2D_REFERENCES
	L2D_STORE_HIT_SHARED
	L2D_VICTIMB_FULL
	L2I_DEMAND_READS
	L2I_HIT_CONFLICTS
	L2I_L3_REJECTS
	L2I_PREFETCHES
	L2I_READS
	L2I_RECIRCULATES
	L2I_SPEC_ABORTS
	L2I_SNOOP_HITS
	L2I_UC_READS
	L2I_VICTIMIZATION
	L3_INSERTS
	L3_LINES_REPLACED
	L3_MISSES
	L3_READS
	L3_REFERENCES
	L3_WRITES
	LOADS_RETIRED
	LOADS_RETIRED_INTG
	MEM_READ_CURRENT
	MISALIGNED_LOADS_RETIRED
	MISALIGNED_STORES_RETIRED
	NOPS_RETIRED
	PREDICATE_SQUASHED_RETIRED
	RSE_CURRENT_REGS_2_TO_0
	RSE_CURRENT_REGS_5_TO_3
	RSE_CURRENT_REGS_6
	RSE_DIRTY_REGS_2_TO_0
	RSE_DIRTY_REGS_5_TO_3
	RSE_DIRTY_REGS_6
	RSE_EVENT_RETIRED
	RSE_REFERENCES_RETIRED
	SERIALIZATION_EVENTS
	SI_CCQ_COLLISIONS
	SI_CCQ_INSERTS
	SI_CCQ_LIVE_REQ_HI
	SI_CCQ_LIVE_REQ_LO
	SI_CYCLES
	SI_IOQ_COLLISIONS
	SI_IOQ_LIVE_REQ_HI
	SI_IOQ_LIVE_REQ_LO
	SI_RQ_INSERTS
	SI_RQ_LIVE_REQ_HI
	SI_RQ_LIVE_REQ_LO
	SI_SCB_INSERTS
	SI_SCB_LIVE_REQ_HI
	SI_SCB_LIVE_REQ_LO
	SI_SCB_SIGNOFFS
	SI_WAQ_COLLISIONS
	SI_WDQ_ECC_ERRORS
	SI_WRITEQ_INSERTS
	SI_WRITEQ_LIVE_REQ_HI
	SI_WRITEQ_LIVE_REQ_LO
	SPEC_LOADS_NATTED
	STORES_RETIRED
	SYLL_NOT_DISPERSED
	SYLL_OVERCOUNT
	THREAD_SWITCH_CYCLE
	THREAD_SWITCH_EVENTS
	THREAD_SWITCH_GATED
	THREAD_SWITCH_STALL
	UC_LOADS_RETIRED
	UC_STORES_RETIRED

