Google
Hardware Performance Monitoring
Landscape

Stéphane Eranian
ProTools 2019
SuperComputing 2019
November 2019
Denver, CO

Agenda

Google

PMU hardware features
Linux support

Google usage
Challenges

Intel SkylakeX core PMU

e 3 fixed counters, 4 generic counters (8 w/ HT off), all 48-bit wide

O

Global control and overflow status, intr on overflow, NMlI

e Precise sampling: PEBS: eliminates interrupt-based sampling IP-skid

O

(@)
(@)
(@)

Supported by subset of at-retirement events

Sample recorded by ucode to virtual memory buffer

1 intr per buffer full: significant overhead reduction = increased sampling frequency
Captures: IP, machine state, data addr for Id/st

e Topdown bottleneck decomposition support

e 32-deep Last Branch Record (LBR), 2x vs. Haswell/Broadwell

(@)

(@)

Captures consecutive taken branches (src/dst, prediction, cycles since last taken branch captured)
Can freeze on PMU interrupt, filter on branch types and priv levels, call stack mode

Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3B

Google

https://software.intel.com/sites/default/files/managed/7c/f1/253669-sdm-vol-3b.pdf

Intel Skylake Timed LBR: Triad example

PERF_RECORD_SAMPLE (IP, 0x4002)0x408e34 period:
. branch stack: nr:32

Triad: A[i] =
Each vector is 256MB

B[i] + ¢ * C[i]

408e10:

408el4

408e24

408e34

$ perf
$ perf

Google

movsd

:movsd
408e18:
408elc:
408e20:

add
add
add

:mulsd
408e28:
408e2c:
408e31:

addsd
movsd
cmp

:jne

record
script

($rdx) , $xmm2
(%$rcx) , $xmml
$0x8, %rdx
$0x8,%rcx
$0x8,%rsi
$xmmO0 , $xmml
$xmm2 , $xmml
$xmml , -0x8 (%rsi)
$rax, $rdx
408e10

-b -e br_inst_retired.any:upp -c 1000002
-F brstack

: 0000000000408e34

0000000000408e34

: 0000000000408e34
: 0000000000408e34

0000000000408e34

: 0000000000408e34

0000000000408e34

: 0000000000408e34
: 0000000000408e34

0000000000408e34

: 0000000000408e34
: 0000000000408e34

0000000000408e34

: 0000000000408e34

0000000000408e34

: 0000000000408e34
: 0000000000408e34

0000000000408e34

: 0000000000408e34
: 0000000000408e34

0000000000408e34

: 0000000000408e34

0000000000408e34

: 0000000000408e34
: 0000000000408e34

0000000000408e34

: 0000000000408e34
: 0000000000408e34

0000000000408e34

: 0000000000408e34

0000000000408e34

: 0000000000408e34

0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10
0000000000408e10

1000002

3 cycles
2 cycles
2 cycles
2 cycles
3 cycles
2 cycles
2 cycles
2 cycles
3 cycles
2 cycles
2 cycles
7 cycles
2 cycles
2 cycles
3
4
3
2
2
3
2
2
3

LB - - - B - L - B - - - L B - L~ T - I - |

cycles
6 cycles
cycles
cycles
cycles
cycles
cycles
cycles

LB - L - B

cycles
252 cycles
2 cycles
2 cycles
2 cycles
3 cycles
2 cycles
2 cycles
2 cycles
3 cycles

Wil

©O 0O 00000000 O0OOoO O O o

© o o oo oo

©O o oooooo

Intel Skylake Timed LBR: Triad example

Triad: A[i] = B[i] + ¢ * C[i]
Each vector is 256MB

408e10:movsd
408el4 :movsd
408el8:add
408elc:add
408e20:add
408e24:mulsd
408e28:addsd
408e2c:movsd
408e31:cmp
408e34:jne

$ perf record
$ perf script

Google

(%$rdx) , $xmm2
(%$rcx) , $xmml
$0x8,%rdx
$0x8,%rcx
$0x8,%rsi
$xmmO0 , $xmml
$xmm2 , $xmml
$xmml, -0x8 (%rsi)
$rax, $rdx
408e10

-b -e br_inst_retired.any:upp -c 1000002

-F brstack

PERF_RECORD_SAMPLE (IP, 0x4002)0x408e34 period: 1000002

. branch stack: nr:32
..... 0: 0000000000408e34
..... 1: 0000000000408e34
..... 2: 0000000000408e34
..... 3: 0000000000408e34
..... 4: 0000000000408e34
: 0000000000408e34
, 0000000000408e34
..... 000000000408e34
..... 0000000408e34

3: 0000000000408e34

-> 0000000000408el0 3 cycles
-> 0000000000408e10 2 cycles
-> 0000000000408e10 2 cycles
-> 0000000000408el0 2 cycles

‘v g o9

o o oo

-> 000
-> 000

_> o0o{ Number of cycles since entry #3 was recorded
-> o00of Shows effect of speculation and prefetching

-> 000
-> 000

-> 0000000000408e10 2 cycles
-> 0000000000408el0 7 cycles
-> 0000000000408e10 2 cycles
-> 0000000000408el1l0 2 cycles

-> 0000000000408el10 3 cycles

NNNNNNNNNNANGATN 3 1

-> 0000000000408e10 46 cycles

‘v W o o

P

D

©o o o oo

p

-> 000000000408el1l0 2 cycles

iC pasic block
dynarm
4: 0000000000408e34 -> 0000000000408el1l0 3 cycles
..... 75 zcy U
..... 27: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 28: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 29: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 30: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 31: 0000000000408e34 -> 0000000000408e10 3 cycles P 0

Intel Skylake Timed LBR: Triad example

e Measuring the effects of hardware prefetchers on core loop execution

140 Triad Basic Block Latency Distribution

[1 Hw Prefetchers off
120 [| Hw Prefetchers on I

log(counts)

GOO le 0 200 400 600 800 1000 1200 40 100 1800
L) latency in cycles

Intel Topdown analysis

e Characterize hw bottlenecks
o NOT a cycle decomposition
o Does not tell how each cycle is used
o Not all metrics use same unit, e.g., slots, cycles

e Hierarchical decomposition
o Uses lots of PMU events
o Toplevel: 5 events

e Counting mode analysis
o Steers developer towards problem

e Sampling to locate bottlenecks

e Topdown specs available as XLS spreadsheet
o Contains PMU events and formulas to compute each

metric in the tree Topdown spreadsheet
Google A Top-Down method for performance analysis and counters architecture, Ahmad Yasin, ISPASS14

https://download.01.org/perfmon/TMA_Metrics.xlsx
https://www.researchgate.net/publication/269302126_A_Top-Down_method_for_performance_analysis_and_counters_architecture

Intel Topdown example: Triad example

| topdown
| ===
‘ # | unit: Slots
|-==————
| Frontend Bad Backend Retiring
| Bound Speculation Bound
HW prefetch on 0.47% 0.11% 72.32% 27.10%
HW prefetch off 0.28% 0.08% 88.67% 10.97%

Triad: A[i] = B[i] + ¢ * C[i]
Each vector is 256MB

Google

Intel Topdown example: Triad example

| topdown # | topdown_be
| = m o m m # R e
‘ # | unit: Slots # | unit: Slots

|-==———— # |-
| Frontend Bad Backend Retiring # | Memory Core
| Bound Speculation Bound # | Bound Bound

HW prefetch on 0.47% 0.11% 72.32% 27.10% HW prefetch on 66.43% 5.96%

HW prefetch off 0.28% 0.08% 88.67% 10.97% HW prefetch off 81.95% 6.71%

Triad: A[i] = B[i] + ¢ * C[i]
Each vector is 256MB

Google

Intel Topdown example: Triad example

3

| topdown # | topdown_be
| = m o mm # R e
‘ # | unit: Slots # | unit: Slots
| == Ki | =mmmmmmmmmme oo
| Frontend Bad Backend Retiring # | Memory Core
| Bound Speculation Bound # | Bound Bound
HW prefetch on 0.47% 0.11% 72.32% 27.10% HW prefetch on 66.43% 5.96%
HW prefetch off 0.28% 0.08% 88.67% 10.97% HW prefetch off 81.95% 6.71%

£

| topdown_be_mem

| Ll L2 L3 DRAM Store
| Bound Bound Bound Bound Bound

3= = H H I
[=}
o]
[N
o+
2]
o
o
[
[
2]

HW prefetch on 6.67% 12.47% 1.03% 40.81% 3.31%
HW prefetch off 0.18% 0.00% 2.78% 75.87% 1.11%

Triad: A[i] = B[i] + ¢ * C[i]
Each vector is 256MB

Google

Intel Topdown example: Triad example

3

| topdown
| = m o mm
‘ # | unit: Slots

| == oo
| Frontend Bad Backend Retiring
| Bound Speculation Bound

HW prefetch on 0.47% 0.11% 72.32% 27.10%
HW prefetch off 0.28% 0.08% 88.67% 10.97%

£

| topdown_be_mem

| Ll L2 L3 DRAM Store
| Bound Bound Bound Bound Bound

3= = H H I
[=}
o]
[N
o+
2]
o
o
[
[
2]

HW prefetch on 6.67% 12.47% 1.03% 40.81% 3.31%
HW prefetch off 0.18% 0.00% 2.78% 75.87% 1.11%

| topdown_be

Triad: A[i] = B[i] + ¢ * C[i]
Each vector is 256MB

Google

I ________________
| Memory Core

| Bound Bound

e ok asVaE 3= 3F 3 3

HW prefetch on 66.43% 5.96%
HW prefetch off 81.95% 6.71%

| topdown_be mem dram

|====m—m

| unit: Clocks

A @
| MEM MEM

| Bandwidth Latency

HW prefetch on 65.35% 13.43%

HW prefetch off 51.28% 26.78%

Steering towards largest bottleneck

Intel Icelake core PMU

e 8 generic counters, 2x Skylake!
o But event constraints are back (PMC0-PMC3 support more events)

e New fixed counter: TOPDOWN. SLOTS
o Counts issue slots per thread = cycles * machine width

e New fixed counter: PERF METRICS for Topdown
o High level derived metrics: 4 top level metrics in one MSR, 8-bit percentaF
o Reduces pressure from 5 counters to 1 (+SLOTS)
o Topdown possible per thread (vs. only per core on Skylake)

e Extended PEBS

o All counters support PEBS (vs. only 4 generic counters on Skylake)
o All events can use the buffer and recoding of machine state
o Non at-retirement events have smaller skid, but not skidless

e Adaptive PEBS

o PEBSrecord is configurable by register groups vs. fixed size on previous generation (192 bytes)

o Canrecord XMM0-XMM7 and full LBR
Google Intel® 64 and IA-32 Architectures Software Developer’'s Manual Volume 3B

https://software.intel.com/sites/default/files/managed/7c/f1/253669-sdm-vol-3b.pdf

Intel Icelake PMU: PERF METRICS example

$ perf stat -I 1000 --topdown -a

it time
.000373951
.000373951
.000373951
.000373951

e

counts unit
8,460,978,609
3,445,383,303
15,886,483,355
9,163,488,720

events

topdown-retiring # 22.9%
topdown-bad-spec # 9.3%
topdown-fe-bound # 43.0%
topdown-be-bound # 24.8%

Multiplying topdown. s1otsto scale counts

Google

retiring

bad speculation
frontend bound
backend bound

Actual Topdown breakdown

Intel SkylakeX uncore PMUs

To/From
remote
socket

SkylakeX mesh interconnect

UPI bandwidth

C-state residency

Local vs. remote
memory
bandwidth,
Average miss

latency

To/From
DRAM

_

memory bandwidth

PCle bandwidth
to/from memory, p2p

Intel® Xeon® Processor Scalable Memory Family Uncore Performance Monitoring Reference Manual

Google

https://software.intel.com/en-us/download/intel-xeon-processor-scalable-memory-family-uncore-performance-monitoring-reference-manual

Intel SkylakeX CacheQoS

e Intel RDT technology introduced in server SKUs with HaswellX
o 2 monitoring and 2 enforcement components in the L3 cache

e L3 occupancy and partitioning

o CMT: monitoring allocations/thread via Resource Management ID (4 RMID/core) tag

o CAT: partitioning per Class of Service ID (16 CLOSID), config bitmask, e.g, 10-bit mask, 0" cache
o CDP: variant of CAT where partitions are split between code and data

o RMID/CLOSID saved/restored on context switch

e Memory bandwidth
o MBM: bw usage/thread via RMID, includes reads/writes, local vs. total memory bw
o MBA: limit bandwidth usage per CLOSID(8), set % of limit in 10% increments in [10-90]

e Very useful because tracking and enforcement can be done per thread

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3B, Chapter 17

Google

https://software.intel.com/sites/default/files/managed/7c/f1/253669-sdm-vol-3b.pdf

AMD Zen2 core PMU

e 6 48-bit generic counters/thread

o interrupt on overflow support, including non-maskable interrupt (NMI)
o No event counter constraints

e Max incr. 15/cycle: problem for some events such as FLOPS

o MERGE event: fuse to consecutive counters
o Kernel patch proposed by AMD on LKML to allow fusing, currently no support

e Extremely long PMU interrupt latency
o Causes problems with skid, has kernel race conditions especially in frequency sampling mode
o AMD mitigation (v5.2): poll for <=50us on PMU disable if a counter has overflowed (bit 47 clear)

e No global counter controls, no overflow status
o All counters fully independently controlled

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision BO Processors

Google

https://lkml.org/lkml/2019/8/26/828
https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf

AMD Zen2 core events

e Not much changes since Fam15h

e 6 event categories

FPU: floating points, incl. FLOPS
LS: load/store, dtlb, prefetch
IC/BP: icache, itlb, branches

DE: decoders

EX: instructions

L2: L2 cache

o O O O O O

e OnlyCYCLES NOT IN HALT eventto count core cycles
o No references cycles event, only MPERF MSR (no sampling, system-wide only)

e No topdown-style bottleneck decomposition
o Few stalls events

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision BO Processors

Google

https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf

AMD Zen2 IBS

e AMD precise sampling feature unchanged since Fam15h

e Samples u-ops at random
o Interrupts when tagged u-op on correct path retires, otherwise retry another u-op
Period expressed in either cycles or y-op (with hw randomization)
Returns: precise IP, lots of info about u-op depending on type
Latency of u-op: tag to retirement (total exec), completion to retirement (retirement delay)
Branch: source, destination, prediction, direction, type
Load/Store: IP, phys addr, data virt addr, data phys addr, tlb, data source

O O O O O

e No filtering

o Cannot use to target specific condition, e.g., L3 misses

e No buffering

o One interrupt per sampled u-op

Google Processor Programming Reference (PPR) for Family 17h Model 31h, Revision BO Processors

https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf

AMD Zen2 IBS_OP on Triad: perfect!

$ perf record -a -C 0 -c 825000 -e rcl:pp sleep 10 (sampling in u-op domain)

11.
11.
11.
11.
.95
11.
11.
11.
11.

9insns
Each 1/9th samples 10
11.1%

28
11
13
13

01
22
08
08

| 50:

movsd
movsd
add
add
add
mulsd
addsd
movsd
cmp
jne

($rax) , $xmml
(%$rcx) , $xmm0
$0x8, %$rax
$0x8,%rcx

$0x8, %rdx
$xmm2 , $xmm0
$xmml , $xmm0
$xmm0 , -0x8 ($rdx)

%rsi,%rax macro-fused
50 insn

e (Good: If want to understand basic block execution count

e Bad:if | want to understand where the load cache misses are
o only 22% of samples are relevant here (the 2 loads in red)

Google

AMD Zen2 LBR

e No changes from Fam15h

e 1-deep Last Branch Record
o Captures 1 source/destination
o Controlled by DBG CTL MSR

e No connection to core PMU: no freeze on PMI

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision BO Processors

Google

https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf

AMD Zen2 uncore PMUs

e L3PMmUM
o Shared by 4 cores/8 threads
6 counters/CCX
Possibility to set a thread mask (8-bit) and slice mask (4-bit) per counter
Events: number of requests or misses, miss latency
No possibility to measure L3 activity from core

e Data Fabric (DF) PMUZ

o Shared by all Core Complexes (CCX) on socket
o 4 counters/DF
o Events: none published

e |IOMMU PMUE!

[1] Processor Programming Reference (PPR) for Family 17h Model 31h, Revision BO Processors
[2] Linux kernel source tree: arch/x86/events/amd/uncore.c
[3] Linux kernel source tree: arch/x86/events/amd/iommu.c

Google

O O O O

https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/events/amd/uncore.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/events/amd/uncore.c

AMD Zen2 CacheQoS

e First implementation of CacheQoS on AMD

e Hardware interface very similar to Intel's RDT
o RMID (Resource Management ID) to track resource usage
o COS (Class of Service ID) to enforce class of service restrictions

e L3 Cache support

o Monitoring: track cache allocations per RMID
o Enforcement: partitioning via cache bitmask(CBM) per COS, CBM bit = 1/n'" of cache if LEN=n

e Memory Bandwidth

o Monitoring: bandwidth per RMID, covers only reads (L3 fills), total vs. local supported
o Enforcement: bandwidth limits per COS, at %.GB/s granularity, covers reads and writes

AMDG64 Technology Platform Quality of Service Extensions

Google

https://developer.amd.com/wp-content/resources/56375_1.00.pdf

Linux supportin 5.4

e Intel Icelake

o Extra core PMU counters
o Extended PEBS, Adaptive PEBS
o PERF METRICS still pending approval

e AMD Zen2
o Core PMU
o IBS PMU (both IBS OP & FETCH)
o L3 and DF PMU

e (CacheQoS
o From Intel HaswellX to Cascadelake processors, and some Atom processors (for L2 CAT)
o AMD Zen2

Google

Linux CacheQoS support: resctrl

e Abstract Interface to CacheQoS features: resctrl filesystem
o Supports Intel Xeon and AMD Zen2 QoS

® resctrl != cgroup
o Operates similarly to cgroup: move threads (not processes) into resctrl group
o Each resctrl group assigned a RMID and CLOSID

Example: Read BW from local memory:
$ cd /sys/fs/resctrl; mkdir grp; cd grp; echo $$ > tasks
taskset -c 0 my test &
a=$ (cat mon data/mon L3 00/mbm local bytes)
sleep 1
b=$ (cat mon_data/mon_ L3 00/mbm local bytes)
echo “$(((b - a) >> 20)) MiB/s”

w v v N »n

Resctrl Ul documentation

Google

https://developer.amd.com/wp-content/resources/56375_1.00.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/tree/Documentation/x86/resctrl_ui.rst

PMU events

e Micro-architectural events oftentimes difficult to generalize

o Specific to a micro-architecture, e.g., number of TLB levels, speculative execution
o May be hard to compare from one CPU generation to another

e What does cycles (Linux generic event) event measure?
Core cycles? Regardless of SMT

Turbo cycles? Increments faster with CPU clock

Reference cycles? Increments at constant rate regardless of Turbo
Does it count in all C-states?

O O O O

e What does cache-misses (Linux generic event) event measure?
o At what cache level? For load or stores? For code or data? Speculative accesses?
o Hardware prefetchers? Software prefetches?

e Always prefer actual PMU events to generic versions

o Know what you want to measure
Google

Intel Skylake TLB structures

L1 ITLB i — Page fault to 0S
[
128
Entries
. 4K
Entries core
2M i
thread0 \: 1536 thSICa|
Entries page
4K/2M
8 Code
Entries Dat
2M Peracire \
thread1
64 /
Entries
32 4K
Enzt&es \ core
core
CR3)
4 PAGE TABLE
enies /L1 DTLB L2TLB g

16 (STLB) (4k pages)

core

EPT Virtualization

Intel® 64 and IA-32 Architectures Optimization Reference Manual

Google

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

Intel Skylake TLB event example

FRONTEND RETIRED.ITLB_ MISS]

L1ITLB

ITLB.TLB FLUSH

[]

DTLB_* MISSES.MISS_CAUSES_A WALK
ITLB_MISSES.MISS_CAUSES A WALK

»Page fault to OS

-

—

L1 DTLB L2TLB

(STLB)

DTLB_* MISSES.STLB_HIT
ITLB_MISSES.STLB_HIT
TLB_FLUSH.STLB_ANY

MEM INST RETIRED.STLB MISS_*
FRONTEND_RETIRED.STLB_MISS

CR3

/////"

PAGE TABLE

|

DTLB_* MISSES.WALK DURATION
DTLB_*_ MISSES.WALK_ACTIVE
DTLB_* MISSES.WALK_ PENDING
ITLB_MISSES.WALK DURATION
ITLB_MISSES.WALK_ PENDING

Google ALL EVENTS IN RED ARE SPECULATIVE

DTLB_* MISSES.WALK COMPLETED*
ITLB_MISSES.WALK COMPLETED*
completed = regardless of outcome

How is Google using all of this?

Google

Google production environment

e Everything runs in container groups (cgroups)
o Cgroup: Linux resource encapsulation abstraction: cpuset, memory, ...
o Provides relative isolation

e Jobs are dispatched by a scheduling infrastructure called Borg
e Servers may be dedicated or shared between different jobs

cgroup C

Google

Google PMU data collector

e The perf toolis installed on all production servers
o Can beinvoked from remote via a dedicated daemon

e perf contains custom extensions

o Handling of hugepage text
o High level core and uncore PMU metrics

mem bw (uncore metrics) Topdown (core metrics)

$------------—— #

Socket0 | Socketl | # | topdown

#----———— # |-————

RAM Bandwidth | RAM Bandwidth | # | unit: issue slots

Wr Rd| Wr Rd| # ===

MB/s MB/s | MB/s MB/s | # | FrontEnd Bad Uops BackEnd

#-----—-————————— # | Bound Spec Retiring Bound
16.76 16.70 9.25 11.07 #

1.038100775 29.05% 7.32% 11.53% 52.10%

Google-Wide-Profiler (GWP)

e Fleet wide profiler infrastructure
o Collects performance monitoring data on XX% of fleet/day for xx secs

e At scale, GWP delivers useful profile despite collecting for a few seconds

e GWP collects PMU and other performance metrics per machine

o Invokes perf record tool in system-wide mode on various PMU events
o perf record invoked in pipe mode to avoid disk I/0. Data processed offline.

e Symbolizations challenge
o Database of all symbols for all deployed binaries, tagged by BuildID

Google-Wide Profiling: A Continuous Profiling Infrastructure for Data Centers, Gang Ren,Eric Tune, Tipp Moseley, Yixin Shi,Silvius Rus,Robert Hundt, Google

Google

https://ai.google/research/pubs/pub36575

GWP architecture

Google

|
Machine]
4 Database SOftware
Package Servers
Manager
)|
*] \ perf record
[. f Profile
Symbolizer] Collectors]
Profile DB
(B|gQuery

\
)|
[—[_[Webserver]

, Gang Ren,Eric Tune, Tipp Moseley, Yixin Shi,Silvius Rus,Robert Hundt, Google, IEEE Micro 2010

https://ai.google/research/pubs/pub36575

GWP usefulness

Google

Can help answer wealth of questions about how software runs fleet wide

Classic queries:
o What is the function consuming most cycles fleetwide? And which applications are calling it?
o What is the application consuming most cycles fleetwide?
o What library is most used?
o Do we have alot of TLB page walks? On which functions, binaries?

Can drill down to specific binary version and assembly code
Queries via a GUI, SQL, and programming

Small improvements on hot functions make a huge difference at scale

[M] tc_delete_aligned(void* p, std::align_val_t ¢ S

] tc_delete_sized(void* p, size_t size) extern "C" int tc_posix memalign(void** result_ptr, size_t align, size_t size)

(4] tc_delete_sized_aligned(void® p, size_tt, —THROW {

[M]tc_deletearray_sized(void* p, size_t size) © GWP 13:03 (local) Not useful?
[M]tc_deletearray_sized_aligned(void* p, size i : F 7

il v _aligned(P b Cumulative CPU_CYCLES consumed by function and its children

[M] tc_delete_nothrow(void* p, const std::nothr
[M]tc_delete_aligned_nothrow(void* p, std::ali¢ tc_posix_memalign
[M] tc_newarray(size_t size) See Callgraph: [7 days] See GWP: [GWP web ui] File a bug

[M]tc_newarray_aligned(size_t size, std::align_

= Google-Wide Profiling

] tc_newarray_nothrow(size_t size, const std

[M]tc_newarray_aligned_nothrow(size_t size, |

[M] tc_deletearray(void* p)

[M]tc_deletearray_aligned(void* p, std::align Ky bulids: CPUCYCLES & E execname functionname +fl¢ Links
Facts % Sum. %
\ 17.61% Berlin tc_posix_memalign BuildID
CPUCYCLES X 10.80% 28.41% Hamburg tc_posix_memalign BuildiD :
6.14% 34.55% Miinchen tc_posix_memalign BuildiD
Add fact Q 491% 39.46% Koln tc_posix.memalign BuildiD :
3.42% 42.88% Frankfurt tc_posix_memalign BuildiD :
Groupings 3.41% 46.29% Stuttggart tc_posix_memalign BuildiD
. . X . X 292% 49.21% Dusseldorf tc_posix_memalign BuildiD :
Function is ‘[agged as hot by GWP 272% 5192% Dortmund tc_posix_memalign BuildiD
data Add grouping.. Q :zz: :::;: is?en- tcmos!&memalfgn BuTIdID
X . eipzig tc_posix_memalign BuildID
<2.46% Bremmen tc_posix_memalign BuildID
Conditions <2.46% Dresden tc_posix_memalign BuildiD 3
orig_function_name = r'tc_posix_memalign® * X <2.46% Hanover tc_posix_memalign BuildID
filename = temalloc/tcmalloc.cc Q

${dimension} ${operator} ${value}

Duration
End date (Inclusive) Duration

latest 1 days

Other
Limit

10

Google

RESET EXECUTE

Topdown on parts of Websearch

Frontend Lat
13.9%

Retiring
32.0%

Frontend BW
9.7%

Backend Mem

20.5%
Bad Speculation
Backend Core 15.4%
8.5%
Google AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers,Grant Ayers, Nayana Prasad Nagendra, David |. August, Hyoun Kyu Cho, Svilen

Kaneyv, Christos Kozyrakis, Trivikram Krishnamurthy,Heiner Litz, Tipp Moseley, ISCA'19

https://ai.google/research/pubs/pub48320

AsmDB

e Goalisto have a database of nearly all executed instructions in our data-centers
o Q: Are we executing x87 insn 'X' ? Q: What is the most common type of load addressing?
o Ranking of insn
o DB with one row perinsn

e Uses LBR data to identify executed basic blocks
o Only keep top 1000 binaries by cycles consumed: covers 90% of all cycles
o Heavy offline post processing: basic block predecessors, identify loops
o 600GiB/day of data!

e Data used for more advanced analysis

Spotting manual optimizations

o Compiler optimization opportunities

Invaluable for code analysis: code working set, + GWP data icache misses and control flow
o See example advanced analysis in frontend stall paper from Grant Ayers et al

AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers,Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen Kanev, Christos
Google Kozyrakis, Trivikram Krishnamurthy,Heiner Litz, Tipp Moseley, Parthasarathy Ranganathan

@)

(@)

https://ai.google/research/pubs/pub48320
https://ai.google/research/pubs/pub48320

Automatic Feedback-Driven Optimization (autoFDO)

e Feedback-directed Optimization (FDO)

o Use compiler to optimize code by providing execution information for load test run
o Usually involved 2-pass compilation to instrument(1) and optimize(2)

e (Google has lots of applications!

e Not every application has a representative benchmarks

o Some cannot even create a benchmark (e.g., because hard to get good input data, scale)
o Behavior may change based on day of the week or the month

e Traditional Feedback Driven Optimization (FDO) is not practical
o Too much overhead, cannot deploy to production just to collect a profile

e How can we get the benefits of FDO without instrumenting code?

AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale Applications, Dehao Chen, David Xinliang Li, Tipp Moseley, Google, CGO'16

Google

https://ai.google/research/pubs/pub45290

Traditional FDO

-fprofile

Google

compile with profiling
instrumentation

run a load test
a. instrumentation
slowdown
b. representative input
hard, especially with
sensitive data and
dependent services

Recompile and release

AutoFDO

1. compile and release

Available to ANY applications: live production, no loadtest needed

Google

AutoFDO pipeline

e LBR profiles collected via GWP

o Used for basic block exec count

o Submitted weekly to database N N\
e Converted to source location \—/ﬁ ~—1 ~—1
o func, src offset to func start, disc R;f:;e sl g |Eg§i DSa?arEf:se Sbfggte
Archive Symbols

e Staleness of profiles
o Changes for most apps are incremental

e Transformations
o Straightening of hot paths
o Indirect call promotions
o Many more possible...

(e

perf events Profile
Daemon Generator

Google

autoFDO: comparison with FDO

Application FDO AutoFDO Ratio
server 17.61% 15.89% 90.23%
graphl 14.68% | 14.04% 95.65%
graph?2 7.16% 6.27% 87.50%
machine learningl 8.92% 8.46% 94.85%
machine learning2 7.09% 6.60% 93.06%
encoder 8.63% 3.31% 38.37%
protobuf 16.96% | 14.40% 84.94%
artificial intelligencel 10.12% | 10.12% 100.00%
artificial intelligence2 | 13.24% 11.33% 85.61%
data mining 20.48% | 15.54% 75.86%
mean 12.40% 10.52% 84.84%

Speedups against -0O2 binaries

Most of the benefit of traditional FDO without the recompilation, just a flag on the Makefile

GOOgle AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale Applications, Dehao Chen, David Xinliang Li, Tipp Moseley, Google, CGO'16

https://ai.google/research/pubs/pub45290

Borg: handling the noisy neighbor problem!

e Bigger machines = shared by more jobs = more resource pressures
o Onejob (e.g., ML) can consume a lot of memory bandwidth and cause major slowdown to others

e Must identify antagonistic and limit damage
o Per-job bandwidth monitoring using PMU (Intel OFFCORE RESPONSE) or CacheQoS MBM (better)
o Throttle if exceed set threshold using CacheQoS MBA and reduce job bandwidth quota

Ex: limit bw to 10% of peak for threads in mygrp]MMMV/f
cd /sys/fs/resctrl; mkdir mygrp; cd mygrp
cat schemata

echo MB:0=100;1=100

echo “MB:0=10;1=10"” > schemata

echo $$ >tasks

my test <- runs capped at 10% of peak BW

/\/ V\X\/ﬁ%\ﬂ Antagonist task starts

Latency

“v v v N n N

Memory Bandwidth QoS, managing memory bandwidth antagonism (@ Scale, David Lo, Dragoss Sbirlea, Rohit Jnagal, LPC'18

Google

time

https://www.youtube.com/watch?v=29b7n2rqWVM

PMU challenges

Google

Event Validation
o How to validate all the core and uncore PMU events to remove bugs very early?

Events vs. counters

o Want more events to measure more conditions
o Want more counters to avoid multiplexing
o But more counters = larger machine state to manage in the kernel

Better events that count metrics we care about
o Monitoring vs. debugging, metric events (such as PERF METRICS) are very useful

Better identification of true costs
o Hard with massive speculative execution

Overhead management
o More complex data = more processing = more overhead

Assigning blame to jobs
o Challenging for any offcore micro-architectural feature (such as L3 cache)

Linux PMU support challenges

Google

Bigger Machines = bigger pressure on the monitoring subsystem
o AMD Zen2 : 256 CPUs!

At scale, many rare corner cases become visible quickly

Serious scalability issues in the perf eventsinterface and implementation
o File descriptors, memory footprint, algorithmic complexity

Perf tool scalability issues

o Parsing of /proc/PID/maps very racy and can generate sampe symbolization issues
o BuildID collection very expensive in CPU and memory footprint
o Single threaded processing, single output file on 256 CPUs!

Perf tool robustness
o Many sanitizer failures

Patches are being submitted to address these challenges
o See our Linux Plumbers Conference’'19 presentation on this topic here

https://www.linuxplumbersconf.org/event/4/contributions/291/attachments/313/528/Linux_Plumbers_Conference_2019.pdf

Perf_events scalability example: file descriptors

e Large number of file descriptors (fds): 1 fd/event/cpu/cgroup

o 100 cgroups, SkylakeX (112 CPUs), 6 events/cgroup =112 x 100 x 6 = 67,200 fds
o 200 cgroups, AMD Zen2 (256 CPUs), 6 events/cgroup = 200 x 256 x 6 = 307,200 fds

e Large number of events per-cpu:

o 100 cgroups, SkylakeX (112 CPUs), 6 events/cgroup = 100 x 6 = 600 events/CPU
o 200 cgroups. AMD Zen2 (256 CPUs), 6 events/cgroup = 256 x 6 = 1536 events/CPU

Structure names Size Intel SkylakeX AMD Rome
(bytes) Total size (bytes) Total size (bytes)

struct file 256 17MB 78MB
struct perf event 1136 76MB 348MB
Source: Linux-5.3-rc3, pahole TOTAL 93MB 427MB
4KB Pages 22,705 104,400

Google

Final thoughts

e PMU is now a critical part of the any CPU package

e Overall PMU features and quality have improved over the last 10 years
e CacheQoS is another important CPU feature required for data-centers
e Tools have improved but still lag behind hardware too often

e Scalability of tools and kernel monitoring subsystem is a challenge today

THANK YOU

Google

