Google

Hardware Performance Monitoring Landscape

Stéphane Eranian ProTools 2019 SuperComputing 2019 November 2019 Denver, CO

Agenda

- PMU hardware features
- Linux support
- Google usage
- Challenges

Intel SkylakeX core PMU

- 3 fixed counters, 4 generic counters (8 w/ HT off), all 48-bit wide
 - Global control and overflow status, intr on overflow, NMI
- Precise sampling: PEBS: eliminates interrupt-based sampling IP-skid
 - Supported by subset of at-retirement events
 - Sample recorded by ucode to virtual memory buffer
 - 1 intr per buffer full: **significant** overhead reduction = **increased** sampling frequency
 - Captures: IP, machine state, data addr for Id/st
- Topdown bottleneck decomposition support
- 32-deep Last Branch Record (LBR), 2x vs. Haswell/Broadwell
 - Captures consecutive taken branches (src/dst, prediction, cycles since last taken branch captured)
 - Can freeze on PMU interrupt, filter on branch types and priv levels, call stack mode

Intel Skylake Timed LBR: Triad example

Triad: A[i] = B[i] + c * C[i] Each vector is 256MB

408e10:movsd (%rdx),%xmm2 408e14:movsd (%rcx),%xmm1 408e18:add \$0x8,%rdx 408e1c:add \$0x8,%rcx \$0x8,%rsi 408e20:add 408e24:mulsd %xmm0,%xmm1 408e28:addsd %xmm2,%xmm1 408e2c:movsd %xmm1,-0x8(%rsi) 408e31:cmp %rax,%rdx 408e34:jne 408e10

\$ perf record -b -e br_inst_retired.any:upp -c 1000002 \$ perf script -F brstack PERF_RECORD_SAMPLE(IP, 0x4002)0x408e34 period: 1000002

... branch stack: nr:32

 	0:	000000000408e34	->	000000000408e10	3	cycles	P	0
 	1:	000000000408e34	->	000000000408e10	2	cycles	P	0
 	2:	000000000408e34	->	000000000408e10	2	cycles	P	0
 	3:	000000000408e34	->	000000000408e10	2	cycles	P	0
 	4:	000000000408e34	->	000000000408e10	3	cycles	P	0
 	5:	000000000408e34	->	000000000408e10	2	cycles	P	0
 	6:	000000000408e34	->	000000000408e10	2	cycles	P	0
 	7:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	8:	000000000408e34	->	000000000408e10	3	cycles	Ρ	0
 	9:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	10:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	11:	000000000408e34	->	000000000408e10	7	cycles	Ρ	0
 	12:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	13:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	14:	000000000408e34	->	000000000408e10	3	cycles	Ρ	0
 	15:	000000000408e34	->	000000000408e10	40	6 cycles	P	0
 	16:	000000000408e34	->	000000000408e10	3	cycles	Ρ	0
 	17:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	18:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	19:	000000000408e34	->	000000000408e10	3	cycles	Ρ	0
 	20:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	21:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	22:	000000000408e34	->	000000000408e10	3	cycles	P	0
 	23:	000000000408e34	->	000000000408e10	25	52 cycles	s P	0
 	24:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	25:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	26:	000000000408e34	->	000000000408e10	2	cycles	Ρ	0
 	27:	000000000408e34	->	000000000408e10	3	cycles	Ρ	0
 	28:	000000000408e34	->	000000000408e10	2	cycles	P	0
 	29:	000000000408e34	->	000000000408e10	2	cycles	P	0
 	30:	000000000408e34	->	000000000408e10	2	cycles	P	0
 	31:	0000000000408e34	->	0000000000408e10	3	cvcles	P	0

Intel Skylake Timed LBR: Triad example

Triad: A[i] = B[i] + c * C[i] Each vector is 256MB

408e10:movsd	(%rdx),%xmm2
408e14:movsd	(%rcx),%xmm1
408e18:add	\$0x8,%rdx
408e1c:add	\$0x8,%rcx
408e20:add	\$0x8,%rsi
408e24:mulsd	%xmm0,%xmm1
408e28:addsd	%xmm2,%xmm1
408e2c:movsd	%xmm1,-0x8(%rsi
408e31:cmp	<pre>%rax,%rdx</pre>
408e34:jne	408e10

\$ perf record -b -e br_inst_retired.any:upp -c 1000002 \$ perf script -F brstack

Intel Skylake Timed LBR: Triad example

• Measuring the effects of hardware prefetchers on core loop execution

Intel Topdown analysis

- Characterize hw bottlenecks
 - **NOT** a cycle decomposition Ο
 - Does **not** tell how each cycle is used Ο
 - Not all metrics use same unit, e.g., slots, cycles Ο
- Hierarchical decomposition
 - Uses lots of PMU events \bigcirc
 - Toplevel: 5 events Ο
- Counting mode analysis

Google

- Steers developer towards problem Ο
- Sampling to locate bottlenecks
- Topdown specs available as XLS spreadsheet
 - Contains PMU events and formulas to compute each Ο metric in the tree Topdown spreadsheet

	Bac Specula	d ation		F	ron Boi	itend und		Ba	acke	end	Βοι	ınd		
6	Branch mispred	Machine clears		Frontend I atency	Lateriey	Frontend Bandwidth		Core Bound				Memory Bound		
			I-TLB misses	I-cache misses	I-cache misses		Divider	Execution ports	Store Bound	L1 Bound	L2 Bound	L3 Bound		
													I BW	EM

Ĭ

Retiring

A Top-Down method for performance analysis and counters architecture, Ahmad Yasin, ISPASS14

Triad: A[i] = B[i] + c * C[i] Each vector is 256MB

Triad: A[i] = B[i] + c * C[i] Each vector is 256MB

Intel Icelake core PMU

- 8 generic counters, 2x Skylake!
 - But event constraints are back (PMC0-PMC3 support more events)
- New fixed counter: TOPDOWN.SLOTS
 - Counts issue slots per thread = cycles * machine_width
- New fixed counter: PERF_METRICS for Topdown
 - High level derived metrics: 4 top level metrics in one MSR, 8-bit percentage per metric
 - Reduces pressure from 5 counters to 1 (+SLOTS)
 - Topdown possible **per thread** (vs. only per core on Skylake)
- Extended PEBS
 - All counters support PEBS (vs. only 4 generic counters on Skylake)
 - \circ \qquad All events can use the buffer and recoding of machine state \qquad
 - \circ \quad Non at-retirement events have smaller skid, but not skidless
- Adaptive PEBS
 - PEBS record is configurable by register groups vs. fixed size on previous generation (192 bytes)
 - \circ ~ Can record <code>XMM0-XMM7</code> and full <code>LBR</code>

Retiring Bad Frontend Backend Bound

Intel Icelake PMU: PERF METRICS example

Intel SkylakeX uncore PMUs

Intel® Xeon® Processor Scalable Memory Family Uncore Performance Monitoring Reference Manual

Intel SkylakeX CacheQoS

- Intel RDT technology introduced in server SKUs with HaswellX
 - 2 monitoring and 2 enforcement components in the L3 cache
- L3 occupancy and partitioning
 - CMT: monitoring allocations/thread via Resource Management ID (4 RMID/core) tag
 - CAT: partitioning per Class of Service ID (16 CLOSID), config bitmask, e.g, 10-bit mask, □th cache
 - CDP: variant of CAT where partitions are split between code and data
 - RMID/CLOSID saved/restored on context switch
- Memory bandwidth
 - MBM: bw usage/thread via RMID, includes reads/writes, local vs. total memory bw
 - MBA: limit bandwidth usage per CLOSID(8), set % of limit in 10% increments in [10-90]
- Very useful because tracking and enforcement can be done per thread

AMD Zen2 core PMU

- 6 48-bit generic counters/thread
 - interrupt on overflow support, including non-maskable interrupt (NMI)
 - No event counter constraints
- Max incr. 15/cycle: problem for some events such as FLOPS
 - MERGE event: fuse to consecutive counters
 - Kernel <u>patch</u> proposed by AMD on LKML to allow fusing, currently no support
- Extremely long PMU interrupt latency
 - Causes problems with skid, has kernel race conditions especially in frequency sampling mode
 - AMD mitigation (v5.2): poll for <= 50μ s on PMU disable if a counter has overflowed (bit 47 clear)
- No global counter controls, no overflow status
 - All counters fully independently controlled

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors

AMD Zen2 core events

- Not much changes since Fam15h
- 6 event categories
 - FPU: floating points, incl. FLOPS
 - LS: load/store, dtlb, prefetch
 - IC/BP: icache, itlb, branches
 - DE: decoders
 - EX: instructions
 - L2: L2 cache
- Only CYCLES_NOT_IN_HALT event to count core cycles
 - No references cycles event, only MPERF MSR (no sampling, system-wide only)
- No topdown-style bottleneck decomposition
 - Few stalls events

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors

AMD Zen2 IBS

- AMD precise sampling feature unchanged since Fam15h
- Samples μ -ops at random
 - Interrupts when tagged μ -op on correct path retires, otherwise retry another μ -op
 - Period expressed in **either cycles or** μ **-op** (with hw randomization)
 - \circ Returns: precise IP, lots of info about μ -op depending on type
 - **Latency** of μ -op: tag to retirement (total exec), completion to retirement (retirement delay)
 - \circ Branch: source, destination, prediction, direction, type
 - Load/Store: IP, phys addr, data virt addr, data phys addr, tlb, data source
- No filtering
 - Cannot use to target specific condition, e.g., L3 misses
- No buffering
 - One interrupt per sampled μ -op

Google Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors

AMD Zen2 IBS_OP on Triad: perfect!

\$ perf r	ecord -a -C 0	-c 8250	000 -e rc1:pp	sleep 10	(sampling	in μ -op domain)
	11.28 50:	movsd	(%rax),%xmml			
	11.11	movsd	(%rcx),%xmm0			
	11.13	add	\$0x8,%rax			
9 insns	11.13	add	\$0x8,%rcx			
Each 1/9th samples	10.95	add	\$0x8,%rdx			
11.1%	11.01	mulsd	% xmm2 ,% xmm0			
	11.22	addsd	<pre>%xmm1,%xmm0</pre>			
	11.08	movsd	%xmm0,-0x8(%r	dx)		
	11.08	cmp	<pre>%rsi,%rax] m</pre>	acro-fused		
		jne	50	insn		

- Good: If want to understand basic block execution count
- Bad : if I want to understand where the load cache misses are
 - only 22% of samples are relevant here (the 2 loads in red)

AMD Zen2 LBR

- No changes from Fam15h
- 1-deep Last Branch Record
 - Captures 1 source/destination
 - **Controlled by** DBG_CTL_MSR
- No connection to core PMU: no freeze on PMI

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors

AMD Zen2 uncore PMUs

- L3 PMU^[1]
 - Shared by 4 cores/8 threads
 - 6 counters/CCX
 - Possibility to set a thread mask (8-bit) and slice mask (4-bit) per counter
 - Events: number of requests or misses, miss latency
 - No possibility to measure L3 activity from core
- Data Fabric (DF) PMU^[2]
 - Shared by all Core Complexes (CCX) on socket
 - 4 counters/DF
 - Events: none published

• IOMMU PMU^[3]

[1] Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors
[2] Linux kernel source tree: arch/x86/events/amd/uncore.c
[3] Linux kernel source tree: arch/x86/events/amd/iommu.c

AMD Zen2 CacheQoS

- First implementation of CacheQoS on AMD
- Hardware interface very similar to Intel's RDT
 - RMID (Resource Management ID) to track resource usage
 - COS (Class of Service ID) to enforce class of service restrictions
- L3 Cache support
 - Monitoring: track cache **allocations** per RMID
 - Enforcement: partitioning via cache bitmask(CBM) per COS, CBM bit = 1/nth of cache if LEN=n
- Memory Bandwidth
 - Monitoring: bandwidth per RMID, covers only reads (L3 fills), total vs. local supported
 - Enforcement: bandwidth limits per COS, at ¹/₈GB/s granularity, covers reads and writes

Linux support in 5.4

- Intel Icelake
 - Extra core PMU counters
 - Extended PEBS, Adaptive PEBS
 - PERF_METRICS still pending approval

AMD Zen2

- Core PMU
- IBS PMU (both IBS OP & FETCH)
- L3 and DF PMU
- CacheQoS
 - From Intel HaswellX to CascadeLake processors, and some Atom processors (for L2 CAT)
 - AMD Zen2

Linux CacheQoS support: resctrl

- Abstract Interface to CacheQoS features: resctrl filesystem
 - Supports Intel Xeon and <u>AMD Zen2_QoS</u>
- resctrl != cgroup
 - Operates similarly to cgroup: move threads (not processes) into resctrl group
 - Each resctrl group assigned a RMID and CLOSID

```
Example: Read BW from local memory:

$ cd /sys/fs/resctrl; mkdir grp; cd grp; echo $$ > tasks

$ taskset -c 0 my_test &

$ a=$(cat mon_data/mon_L3_00/mbm_local_bytes)

$ sleep 1

$ b=$(cat mon_data/mon_L3_00/mbm_local_bytes)

$ echo "$(((b - a) >> 20)) MiB/s"
```

Resctrl UI documentation

PMU events

- Micro-architectural events oftentimes difficult to generalize
 - Specific to a micro-architecture, e.g., number of TLB levels, speculative execution
 - May be hard to compare from one CPU generation to another
- What does cycles (Linux generic event) event measure?
 - Core cycles? Regardless of SMT
 - Turbo cycles? Increments faster with CPU clock
 - Reference cycles? Increments at constant rate regardless of Turbo
 - Does it count in all C-states?
- What does cache-misses (Linux generic event) event measure?
 - At what cache level? For load or stores? For code or data? Speculative accesses?
 - Hardware prefetchers? Software prefetches?
- Always prefer actual PMU events to generic versions
 - \circ $\,$ Know what you want to measure

Intel Skylake TLB structures

Intel Skylake TLB event example

ALL EVENTS IN RED ARE SPECULATIVE

How is Google using all of this?

Google production environment

- Everything runs in container groups (cgroups)
 - Cgroup: Linux resource encapsulation abstraction: cpuset, memory, ...
 - Provides relative isolation
- Jobs are dispatched by a scheduling infrastructure called Borg
- Servers may be dedicated or shared between different jobs

Google PMU data collector

- The perf tool is installed on all production servers
 - Can be invoked from remote via a dedicated daemon
- perf contains custom extensions
 - Handling of hugepage text
 - High level core and uncore PMU metrics

Topdown	(core	metrics)			
#=====					
#		I			topdown
#					
#		I	unit:	issue slo	ots
#					
#		FrontE	nd B	ad Uops	BackEnd
#		Bound	Sp	ec Retirin	ng Bound
#======					
1.	0381007	75 29.0	5% 7.3	2% 11.53	38 52.108

Google-Wide-Profiler (GWP)

- Fleet wide profiler infrastructure
 - Collects performance monitoring data on XX% of fleet/day for xx secs
- At scale, GWP delivers useful profile despite collecting for a few seconds
- GWP collects PMU and other performance metrics per machine
 - Invokes perf record tool in system-wide mode on various PMU events
 - perf record invoked in pipe mode to avoid disk I/O. Data processed offline.
- Symbolizations challenge
 - Database of all symbols for all deployed binaries, tagged by BuildID

Google-Wide Profiling: A Continuous Profiling Infrastructure for Data Centers, Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, Robert Hundt, Google

GWP architecture

Google-Wide Profiling: A Continuous Profiling Infrastructure for Data Centers, Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, Robert Hundt, Google, IEEE Micro 2010

GWP usefulness

- Can help answer wealth of questions about how software runs fleet wide
- Classic queries:
 - What is the function consuming most cycles fleetwide? And which applications are calling it?
 - What is the application consuming most cycles fleetwide?
 - What library is most used?
 - Do we have a lot of TLB page walks? On which functions, binaries?
- Can drill down to specific binary version and assembly code
- Queries via a GUI, SQL, and programming
- Small improvements on hot functions make a huge difference at scale

NP 13:03 (loca	al)	Not useful?	×			
nulative CPU_ osix_memalign	CYCLES consumed by function and its child	Iren NP web uil File a bug				
		<u> </u>				
	Query builder	CPU_CYCLES ↓	Sum. %	execname	functionname →∥+	Links
	Facts	17.61%	17.61%	Berlin	tc_posix_memalign	Build
	CPU_CYCLES X	10.80%	28.41%	Hamburg	tc_posix_memalign	Build
	0	6.14%	34.55%	München	tc_posix_memalign	Build
	Add fact	4.91%	39.46%	Köln	tc_posix_memalign	Build
		3.42%	42.88%	Frankfurt	tc_posix_memalign	Build
	Groupings	3.41%	46.29%	Stuttggart	tc_posix_memalign	Build
	exechame X functionname X	2.92%	49.21%	Düsseldorf	tc_posix_memalign	Build
GWP		2.72%	51.92%	Dortmund	tc_posix_memalign	Build
	Add arouping Q	2.59%	54.51%	Essen	tc_posix_memalign	Build
	Add grouping	2.46%	56.97%	Leipzig	tc_posix_memalign	Build
		≤2.46%		Bremmen	tc_posix_memalign	Build
	Conditions	≤2.46%		Dresden	tc_posix_memalign	Build
	orig_function_name = r"tc_posix_memalign"	≤2.46%		Hanover	tc_posix_memalign	Build
	filename = tcmalloc/tcmalloc.cc Q					
	\$(dimension) \$(operator) \$(value) Duration I datest Duration 1 days Other Limit 10 Execute Exe					

BuildID

BuildID BuildID BuildID BuildID BuildID BuildID

BuildID BuildID

BuildID

BuildID BuildID

BuildID

Topdown on parts of Websearch

AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers, Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley, ISCA'19

AsmDB

- Goal is to have a database of **nearly all** executed instructions in our data-centers
 - Q: Are we executing x87 insn 'X' ? Q: What is the most common type of load addressing?
 - Ranking of insn
 - DB with one row per insn
- Uses LBR data to identify executed basic blocks
 - Only keep top 1000 binaries by cycles consumed: covers 90% of all cycles
 - Heavy offline post processing: basic block predecessors, identify loops
 - 600GiB/day of data!
- Data used for more advanced analysis
 - Spotting manual optimizations
 - Compiler optimization opportunities
 - Invaluable for code analysis: code working set, + GWP data icache misses and control flow
 - See example advanced analysis in frontend stall paper from Grant Ayers et al

AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers, Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley, Parthasarathy Ranganathan

Automatic Feedback-Driven Optimization (autoFDO)

- Feedback-directed Optimization (FDO)
 - Use compiler to optimize code by providing execution information for load test run
 - Usually involved 2-pass compilation to instrument(1) and optimize(2)
- Google has lots of applications!
- Not every application has a representative benchmarks
 - Some cannot even create a benchmark (e.g., because hard to get good input data, scale)
 - Behavior may change based on day of the week or the month
- Traditional Feedback Driven Optimization (FDO) is not practical
 - Too much overhead, cannot deploy to production just to collect a profile
- How can we get the benefits of FDO without instrumenting code?

Traditional FDO

- 1. compile with profiling instrumentation
- 2. run a load test
 - a. instrumentation slowdown
 - representative input hard, especially with sensitive data and dependent services
- 3. Recompile and release

AutoFDO

1. compile and release

Available to **ANY** applications: live production, no loadtest needed

AutoFDO pipeline

- LBR profiles collected via GWP
 - Used for basic block exec count
 - Submitted weekly to database
- Converted to source location • func, src offset to func start, disc
- Staleness of profiles
 - Changes for most apps are incremental
- Transformations
 - Straightening of hot paths
 - Indirect call promotions
 - Many more possible...

autoFDO: comparison with FDO

Application	FDO	AutoFDO	Ratio
server	17.61%	15.89%	90.23%
graph1	14.68%	14.04%	95.65%
graph2	7.16%	6.27%	87.50%
machine learning1	8.92%	8.46%	94.85%
machine learning2	7.09%	6.60%	93.06%
encoder	8.63%	3.31%	38.37%
protobuf	16.96%	14.40%	84.94%
artificial intelligence1	10.12%	10.12%	100.00%
artificial intelligence2	13.24%	11.33%	85.61%
data mining	20.48%	15.54%	75.86%
mean	12.40%	10.52%	84.84%

Speedups against -02 binaries

Most of the benefit of traditional FDO without the recompilation, just a flag on the Makefile

AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale Applications, Dehao Chen, David Xinliang Li, Tipp Moseley, Google, CGO'16

Borg: handling the noisy neighbor problem!

- Bigger machines = shared by more jobs = more resource pressures
 - One job (e.g., ML) can consume a lot of memory bandwidth and cause major slowdown to others 0
- Must identify antagonistic and limit damage
 - Per-job bandwidth monitoring using PMU (Intel OFFCORE RESPONSE) or CacheQoS MBM (better)
 - Throttle if exceed set threshold using CacheQoS MBA and reduce job bandwidth guota Ο

```
Ex: limit bw to 10% of peak for threads in mygrp
 cd /sys/fs/resctrl; mkdir mygrp; cd mygrp
 cat schemata
 echo MB:0=100;1=100
 echo "MB:0=10;1=10'' > schemata
$ echo $$ >tasks
$ my test <- runs capped at 10% of peak BW
```


PMU challenges

- Event Validation
 - How to validate all the core and uncore PMU events to remove bugs very early?

• Events vs. counters

- Want more events to measure more conditions
- Want more counters to avoid multiplexing
- But more counters = larger machine state to manage in the kernel
- Better events that count metrics we care about
 - Monitoring vs. debugging, metric events (such as <code>PERF_METRICS</code>) are very useful
- Better identification of true costs
 - Hard with massive speculative execution
- Overhead management
 - More complex data = more processing = more overhead
- Assigning blame to jobs
 - Challenging for any offcore micro-architectural feature (such as L3 cache)

Linux PMU support challenges

- Bigger Machines = bigger pressure on the monitoring subsystem
 - AMD Zen2 : 256 CPUs!
- At scale, many rare corner cases become visible quickly
- Serious scalability issues in the <code>perf_events</code> interface and implementation
 - File descriptors, memory footprint, algorithmic complexity
- Perf tool scalability issues
 - Parsing of /proc/PID/maps very racy and can generate sampe symbolization issues
 - \circ \quad BuildID collection very expensive in CPU and memory footprint
 - Single threaded processing, single output file on 256 CPUs!
- Perf tool robustness
 - Many sanitizer failures
- Patches are being submitted to address these challenges
- See our Linux Plumbers Conference'19 presentation on this topic <u>here</u> Google

Perf_events scalability example: file descriptors

- Large number of file descriptors (fds): 1 fd/event/cpu/cgroup
 - 100 cgroups, SkylakeX (112 CPUs), 6 events/cgroup = 112 x 100 x 6 = **67,200** fds
 - 200 cgroups, AMD Zen2 (256 CPUs), 6 events/cgroup = 200 x 256 x 6 = **307,200** fds
- Large number of events per-cpu:
 - 100 cgroups, SkylakeX (112 CPUs), 6 events/cgroup = 100 x 6 = **600** events/CPU
 - 200 cgroups. AMD Zen2 (256 CPUs), 6 events/cgroup = 256 x 6 = **1536** events/CPU

Structure names	Size	Intel SkylakeX	AMD Rome
	(bytes)	Total size (bytes)	Total size (bytes)
struct file	256	17MB	78MB
struct perf_event	1136	76MB	348MB
Source: Linux-5.3-rc3, pahole	TOTAL	93MB	427MB
	4KB Pages	22,705	104,400

Final thoughts

- PMU is now a critical part of the any CPU package
- Overall PMU features and quality have improved over the last 10 years
- CacheQoS is another important CPU feature required for data-centers
- Tools have improved but still lag behind hardware too often
- Scalability of tools and kernel monitoring subsystem is a challenge today

THANK YOU