
Confidential + ProprietaryConfidential + Proprietary

Hardware Performance Monitoring
Landscape
Stéphane Eranian
ProTools 2019
SuperComputing 2019
November 2019
Denver, CO

Confidential + Proprietary

Agenda

● PMU hardware features
● Linux support
● Google usage
● Challenges

Confidential + Proprietary

Intel SkylakeX core PMU

● 3 fixed counters, 4 generic counters (8 w/ HT off), all 48-bit wide
○ Global control and overflow status, intr on overflow, NMI

● Precise sampling: PEBS: eliminates interrupt-based sampling IP-skid
○ Supported by subset of at-retirement events
○ Sample recorded by ucode to virtual memory buffer
○ 1 intr per buffer full: significant overhead reduction = increased sampling frequency
○ Captures: IP, machine state, data addr for ld/st

● Topdown bottleneck decomposition support

● 32-deep Last Branch Record (LBR), 2x vs. Haswell/Broadwell
○ Captures consecutive taken branches (src/dst, prediction, cycles since last taken branch captured)
○ Can freeze on PMU interrupt, filter on branch types and priv levels, call stack mode

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3B

https://software.intel.com/sites/default/files/managed/7c/f1/253669-sdm-vol-3b.pdf

Confidential + Proprietary

Intel Skylake Timed LBR: Triad example

408e10:movsd (%rdx),%xmm2
408e14:movsd (%rcx),%xmm1
408e18:add $0x8,%rdx
408e1c:add $0x8,%rcx
408e20:add $0x8,%rsi
408e24:mulsd %xmm0,%xmm1
408e28:addsd %xmm2,%xmm1
408e2c:movsd %xmm1,-0x8(%rsi)
408e31:cmp %rax,%rdx
408e34:jne 408e10

$ perf record -b -e br_inst_retired.any:upp -c 1000002
$ perf script -F brstack

PERF_RECORD_SAMPLE(IP, 0x4002)0x408e34 period: 1000002
... branch stack: nr:32
..... 0: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 1: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 2: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 3: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 4: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 5: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 6: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 7: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 8: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 9: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 10: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 11: 0000000000408e34 -> 0000000000408e10 7 cycles P 0
..... 12: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 13: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 14: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 15: 0000000000408e34 -> 0000000000408e10 46 cycles P 0
..... 16: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 17: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 18: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 19: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 20: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 21: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 22: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 23: 0000000000408e34 -> 0000000000408e10 252 cycles P 0
..... 24: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 25: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 26: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 27: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 28: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 29: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 30: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 31: 0000000000408e34 -> 0000000000408e10 3 cycles P 0

Triad: A[i] = B[i] + c * C[i]
Each vector is 256MB

Confidential + Proprietary

Intel Skylake Timed LBR: Triad example

408e10:movsd (%rdx),%xmm2
408e14:movsd (%rcx),%xmm1
408e18:add $0x8,%rdx
408e1c:add $0x8,%rcx
408e20:add $0x8,%rsi
408e24:mulsd %xmm0,%xmm1
408e28:addsd %xmm2,%xmm1
408e2c:movsd %xmm1,-0x8(%rsi)
408e31:cmp %rax,%rdx
408e34:jne 408e10

$ perf record -b -e br_inst_retired.any:upp -c 1000002
$ perf script -F brstack

PERF_RECORD_SAMPLE(IP, 0x4002)0x408e34 period: 1000002
... branch stack: nr:32
..... 0: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 1: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 2: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 3: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 4: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 5: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 6: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 7: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 8: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 9: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 10: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 11: 0000000000408e34 -> 0000000000408e10 7 cycles P 0
..... 12: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 13: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 14: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 15: 0000000000408e34 -> 0000000000408e10 46 cycles P 0
..... 16: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 17: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 18: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 19: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 20: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 21: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 22: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 23: 0000000000408e34 -> 0000000000408e10 252 cycles P 0
..... 24: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 25: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 26: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 27: 0000000000408e34 -> 0000000000408e10 3 cycles P 0
..... 28: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 29: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 30: 0000000000408e34 -> 0000000000408e10 2 cycles P 0
..... 31: 0000000000408e34 -> 0000000000408e10 3 cycles P 0

3: 0000000000408e34 -> 000000000408e10 2 cycles

4: 0000000000408e34 -> 0000000000408e10 3 cycles

dynamic basic block

Number of cycles since entry #3 was recorded
Shows effect of speculation and prefetching

Triad: A[i] = B[i] + c * C[i]
Each vector is 256MB

Confidential + Proprietary

Intel Skylake Timed LBR: Triad example

● Measuring the effects of hardware prefetchers on core loop execution

Confidential + Proprietary

Intel Topdown analysis
● Characterize hw bottlenecks

○ NOT a cycle decomposition
○ Does not tell how each cycle is used
○ Not all metrics use same unit, e.g., slots, cycles

● Hierarchical decomposition
○ Uses lots of PMU events
○ Toplevel: 5 events

● Counting mode analysis
○ Steers developer towards problem

● Sampling to locate bottlenecks

● Topdown specs available as XLS spreadsheet
○ Contains PMU events and formulas to compute each

metric in the tree

Retiring Bad
Speculation

Frontend
Bound Backend Bound

Br
an

ch
 m

is
pr

ed

M
ac

hi
ne

 c
le

ar
s

Fr
on

te
nd

La

te
nc

y

Fr
on

te
nd

Ba

nd
w

id
th

I-T
LB

 m
is

se
s

I-c
ac

he
 m

is
se

s
I-c

ac
he

 m
is

se
s

Co
re

 B
ou

nd

M
em

or
y

Bo
un

d

Di
vi

de
r

Ex
ec

ut
io

n
po

rt
s

St
or

e
Bo

un
d

L1
 B

ou
nd

L2
 B

ou
nd

L3
 B

ou
nd

DR
AM

 B
ou

nd
M

EM
 B

W

M
EM

La

te
nc

y

Topdown spreadsheet
A Top-Down method for performance analysis and counters architecture, Ahmad Yasin, ISPASS14

https://download.01.org/perfmon/TMA_Metrics.xlsx
https://www.researchgate.net/publication/269302126_A_Top-Down_method_for_performance_analysis_and_counters_architecture

Confidential + Proprietary

Intel Topdown example: Triad example
#==
| topdown
|--
| unit: Slots
|--
| Frontend Bad Backend Retiring
| Bound Speculation Bound
#==
 HW prefetch on 0.47% 0.11% 72.32% 27.10%
 HW prefetch off 0.28% 0.08% 88.67% 10.97%

1

Triad: A[i] = B[i] + c * C[i]
Each vector is 256MB

Confidential + Proprietary

Intel Topdown example: Triad example
#==
| topdown
|--
| unit: Slots
|--
| Frontend Bad Backend Retiring
| Bound Speculation Bound
#==
 HW prefetch on 0.47% 0.11% 72.32% 27.10%
 HW prefetch off 0.28% 0.08% 88.67% 10.97%

#================================
| topdown_be
|----------------
| unit: Slots
|----------------
| Memory Core
| Bound Bound
#================================
 HW prefetch on 66.43% 5.96%
 HW prefetch off 81.95% 6.71%

1
2

Triad: A[i] = B[i] + c * C[i]
Each vector is 256MB

Confidential + Proprietary

Intel Topdown example: Triad example
#==
| topdown
|--
| unit: Slots
|--
| Frontend Bad Backend Retiring
| Bound Speculation Bound
#==
 HW prefetch on 0.47% 0.11% 72.32% 27.10%
 HW prefetch off 0.28% 0.08% 88.67% 10.97%

#================================
| topdown_be
|----------------
| unit: Slots
|----------------
| Memory Core
| Bound Bound
#================================
 HW prefetch on 66.43% 5.96%
 HW prefetch off 81.95% 6.71%

#===
| topdown_be_mem
|-----------------------------------
| unit: Stalls
|-----------------------------------
| L1 L2 L3 DRAM Store
| Bound Bound Bound Bound Bound
#===
 HW prefetch on 6.67% 12.47% 1.03% 40.81% 3.31%
 HW prefetch off 0.18% 0.00% 2.78% 75.87% 1.11%

1
2

3

Triad: A[i] = B[i] + c * C[i]
Each vector is 256MB

Confidential + Proprietary

Intel Topdown example: Triad example
#==
| topdown
|--
| unit: Slots
|--
| Frontend Bad Backend Retiring
| Bound Speculation Bound
#==
 HW prefetch on 0.47% 0.11% 72.32% 27.10%
 HW prefetch off 0.28% 0.08% 88.67% 10.97%

#================================
| topdown_be
|----------------
| unit: Slots
|----------------
| Memory Core
| Bound Bound
#================================
 HW prefetch on 66.43% 5.96%
 HW prefetch off 81.95% 6.71%

#===
| topdown_be_mem
|-----------------------------------
| unit: Stalls
|-----------------------------------
| L1 L2 L3 DRAM Store
| Bound Bound Bound Bound Bound
#===
 HW prefetch on 6.67% 12.47% 1.03% 40.81% 3.31%
 HW prefetch off 0.18% 0.00% 2.78% 75.87% 1.11%

Steering towards largest bottleneck

1
2

3

Triad: A[i] = B[i] + c * C[i]
Each vector is 256MB

#==
| topdown_be_mem_dram
|------------------------
| unit: Clocks
|------------------------
| MEM MEM
| Bandwidth Latency
#==
 HW prefetch on 65.35% 13.43%
 HW prefetch off 51.28% 26.78%

4

Confidential + Proprietary

Intel Icelake core PMU
● 8 generic counters, 2x Skylake!

○ But event constraints are back (PMC0-PMC3 support more events)

● New fixed counter: TOPDOWN.SLOTS
○ Counts issue slots per thread = cycles * machine_width

● New fixed counter:PERF_METRICS for Topdown
○ High level derived metrics: 4 top level metrics in one MSR, 8-bit percentage per metric
○ Reduces pressure from 5 counters to 1 (+SLOTS)
○ Topdown possible per thread (vs. only per core on Skylake)

● Extended PEBS
○ All counters support PEBS (vs. only 4 generic counters on Skylake)
○ All events can use the buffer and recoding of machine state
○ Non at-retirement events have smaller skid, but not skidless

● Adaptive PEBS
○ PEBS record is configurable by register groups vs. fixed size on previous generation (192 bytes)
○ Can record XMM0-XMM7 and full LBR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3B

Retiring Bad
Speculation

Frontend
Bound Backend Bound

https://software.intel.com/sites/default/files/managed/7c/f1/253669-sdm-vol-3b.pdf

Confidential + Proprietary

Intel Icelake PMU: PERF_METRICS example

$ perf stat -I 1000 --topdown -a
time counts unit events
 1.000373951 8,460,978,609 topdown-retiring # 22.9% retiring
 1.000373951 3,445,383,303 topdown-bad-spec # 9.3% bad speculation
 1.000373951 15,886,483,355 topdown-fe-bound # 43.0% frontend bound
 1.000373951 9,163,488,720 topdown-be-bound # 24.8% backend bound

Multiplying topdown.slots to scale counts

Actual Topdown breakdown

Confidential + Proprietary

Intel SkylakeX uncore PMUs

core0

L3/N

cha0

core1

L3/N

cha1

coreN

L3/N

chaN

pcie0

irp0
m2pcie0

pcie0

irp1
m2pcie1

pcieW

irpW
m2pcieW

imcZ

M
2M

imc0upi0m3upi0

upiXm3upiX

SkylakeX mesh interconnect

Intel® Xeon® Processor Scalable Memory Family Uncore Performance Monitoring Reference Manual

memory bandwidth

PCIe bandwidth
to/from memory, p2p

UPI bandwidth

Local vs. remote
memory

bandwidth,
Average miss

latency

PCU

C-state residency

To/From
remote
socket

To/From
DRAM

https://software.intel.com/en-us/download/intel-xeon-processor-scalable-memory-family-uncore-performance-monitoring-reference-manual

Confidential + Proprietary

Intel SkylakeX CacheQoS

● Intel RDT technology introduced in server SKUs with HaswellX
○ 2 monitoring and 2 enforcement components in the L3 cache

● L3 occupancy and partitioning
○ CMT: monitoring allocations/thread via Resource Management ID (4 RMID/core) tag
○ CAT: partitioning per Class of Service ID (16 CLOSID), config bitmask, e.g, 10-bit mask, ⅒th cache
○ CDP: variant of CAT where partitions are split between code and data
○ RMID/CLOSID saved/restored on context switch

● Memory bandwidth
○ MBM: bw usage/thread via RMID, includes reads/writes, local vs. total memory bw
○ MBA: limit bandwidth usage per CLOSID(8), set % of limit in 10% increments in [10-90]

● Very useful because tracking and enforcement can be done per thread
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3B, Chapter 17

https://software.intel.com/sites/default/files/managed/7c/f1/253669-sdm-vol-3b.pdf

Confidential + Proprietary

AMD Zen2 core PMU

● 6 48-bit generic counters/thread
○ interrupt on overflow support, including non-maskable interrupt (NMI)
○ No event counter constraints

● Max incr. 15/cycle: problem for some events such as FLOPS
○ MERGE event: fuse to consecutive counters
○ Kernel patch proposed by AMD on LKML to allow fusing, currently no support

● Extremely long PMU interrupt latency
○ Causes problems with skid, has kernel race conditions especially in frequency sampling mode
○ AMD mitigation (v5.2): poll for <=50𝜇s on PMU disable if a counter has overflowed (bit 47 clear)

● No global counter controls, no overflow status
○ All counters fully independently controlled

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors

https://lkml.org/lkml/2019/8/26/828
https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf

Confidential + Proprietary

AMD Zen2 core events
● Not much changes since Fam15h
● 6 event categories

○ FPU: floating points, incl. FLOPS
○ LS: load/store, dtlb, prefetch
○ IC/BP: icache, itlb, branches
○ DE: decoders
○ EX: instructions
○ L2: L2 cache

● Only CYCLES_NOT_IN_HALT event to count core cycles
○ No references cycles event, only MPERF MSR (no sampling, system-wide only)

● No topdown-style bottleneck decomposition
○ Few stalls events

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors

https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf

Confidential + Proprietary

AMD Zen2 IBS
● AMD precise sampling feature unchanged since Fam15h

● Samples 𝜇-ops at random
○ Interrupts when tagged 𝜇-op on correct path retires, otherwise retry another 𝜇-op
○ Period expressed in either cycles or 𝜇-op (with hw randomization)
○ Returns: precise IP, lots of info about 𝜇-op depending on type
○ Latency of 𝜇-op: tag to retirement (total exec), completion to retirement (retirement delay)
○ Branch: source, destination, prediction, direction, type
○ Load/Store: IP, phys addr, data virt addr, data phys addr, tlb, data source

● No filtering
○ Cannot use to target specific condition, e.g., L3 misses

● No buffering
○ One interrupt per sampled 𝜇-op

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors

https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf

Confidential + Proprietary

AMD Zen2 IBS_OP on Triad: perfect!

 $ perf record -a -C 0 -c 825000 -e rc1:pp sleep 10 (sampling in 𝜇-op domain)
 11.28 │50: movsd (%rax),%xmm1

11.11 │ movsd (%rcx),%xmm0
11.13 │ add $0x8,%rax
11.13 │ add $0x8,%rcx
10.95 │ add $0x8,%rdx
11.01 │ mulsd %xmm2,%xmm0
11.22 │ addsd %xmm1,%xmm0
11.08 │ movsd %xmm0,-0x8(%rdx)
11.08 │ cmp %rsi,%rax
 │ jne 50

● Good: If want to understand basic block execution count

● Bad : if I want to understand where the load cache misses are
○ only 22% of samples are relevant here (the 2 loads in red)

macro-fused
insn

9 insns
Each 1/9th samples

11.1%

Confidential + Proprietary

AMD Zen2 LBR

● No changes from Fam15h

● 1-deep Last Branch Record
○ Captures 1 source/destination
○ Controlled by DBG_CTL_MSR

● No connection to core PMU: no freeze on PMI

Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors

https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf

Confidential + Proprietary

AMD Zen2 uncore PMUs

● L3 PMU[1]

○ Shared by 4 cores/8 threads
○ 6 counters/CCX
○ Possibility to set a thread mask (8-bit) and slice mask (4-bit) per counter
○ Events: number of requests or misses, miss latency
○ No possibility to measure L3 activity from core

● Data Fabric (DF) PMU[2]

○ Shared by all Core Complexes (CCX) on socket
○ 4 counters/DF
○ Events: none published

● IOMMU PMU[3]

[1] Processor Programming Reference (PPR) for Family 17h Model 31h, Revision B0 Processors
[2] Linux kernel source tree: arch/x86/events/amd/uncore.c
[3] Linux kernel source tree: arch/x86/events/amd/iommu.c

https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/events/amd/uncore.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/events/amd/uncore.c

Confidential + Proprietary

AMD Zen2 CacheQoS

● First implementation of CacheQoS on AMD

● Hardware interface very similar to Intel’s RDT
○ RMID (Resource Management ID) to track resource usage
○ COS (Class of Service ID) to enforce class of service restrictions

● L3 Cache support
○ Monitoring: track cache allocations per RMID
○ Enforcement: partitioning via cache bitmask(CBM) per COS, CBM bit = 1/nth of cache if LEN=n

● Memory Bandwidth
○ Monitoring: bandwidth per RMID, covers only reads (L3 fills), total vs. local supported
○ Enforcement: bandwidth limits per COS, at ⅛GB/s granularity, covers reads and writes

AMD64 Technology Platform Quality of Service Extensions

https://developer.amd.com/wp-content/resources/56375_1.00.pdf

Confidential + Proprietary

Linux support in 5.4

● Intel Icelake
○ Extra core PMU counters
○ Extended PEBS, Adaptive PEBS
○ PERF_METRICS still pending approval

● AMD Zen2
○ Core PMU
○ IBS PMU (both IBS OP & FETCH)
○ L3 and DF PMU

● CacheQoS
○ From Intel HaswellX to CascadeLake processors, and some Atom processors (for L2 CAT)
○ AMD Zen2

Confidential + Proprietary

Linux CacheQoS support: resctrl

● Abstract Interface to CacheQoS features: resctrl filesystem
○ Supports Intel Xeon and AMD Zen2 QoS

● resctrl != cgroup
○ Operates similarly to cgroup: move threads (not processes) into resctrl group
○ Each resctrl group assigned a RMID and CLOSID

Example: Read BW from local memory:
$ cd /sys/fs/resctrl; mkdir grp; cd grp; echo $$ > tasks

 $ taskset -c 0 my_test &
 $ a=$(cat mon_data/mon_L3_00/mbm_local_bytes)
 $ sleep 1
 $ b=$(cat mon_data/mon_L3_00/mbm_local_bytes)
 $ echo “$(((b - a) >> 20)) MiB/s”

Resctrl UI documentation

https://developer.amd.com/wp-content/resources/56375_1.00.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/tree/Documentation/x86/resctrl_ui.rst

Confidential + Proprietary

PMU events
● Micro-architectural events oftentimes difficult to generalize

○ Specific to a micro-architecture, e.g., number of TLB levels, speculative execution
○ May be hard to compare from one CPU generation to another

● What does cycles (Linux generic event) event measure?
○ Core cycles? Regardless of SMT
○ Turbo cycles? Increments faster with CPU clock
○ Reference cycles? Increments at constant rate regardless of Turbo
○ Does it count in all C-states?

● What does cache-misses (Linux generic event) event measure?
○ At what cache level? For load or stores? For code or data? Speculative accesses?
○ Hardware prefetchers? Software prefetches?

● Always prefer actual PMU events to generic versions
○ Know what you want to measure

Confidential + Proprietary

Intel Skylake TLB structures
Page fault to OSL1 ITLB

L1 DTLB L2TLB
(STLB)

CR3

1536
Entries
4K/2M
Code
Data

Per Core

128
Entries

4K
core

64
Entries

4K
core

32
Entries

2M
core

EPT

4
Entries

1G
core

8
Entries

2M
thread0

8
Entries

2M
thread1

PAGE TABLE
 (4k pages)

2 PAGE W
ALKERS

(per c
ore)

physical
page

Virtualization

Intel® 64 and IA-32 Architectures Optimization Reference Manual

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

Confidential + Proprietary

Intel Skylake TLB event example

Page fault to OSL1 ITLB

L1 DTLB L2TLB
(STLB)

CR3
PAGE TABLE

DTLB_*_MISSES.MISS_CAUSES_A_WALK
ITLB_MISSES.MISS_CAUSES_A_WALK

DTLB_*_MISSES.WALK_COMPLETED*
ITLB_MISSES.WALK_COMPLETED*
completed = regardless of outcome

DTLB_*_MISSES.STLB_HIT
ITLB_MISSES.STLB_HIT
TLB_FLUSH.STLB_ANY

MEM_INST_RETIRED.STLB_MISS_*
FRONTEND_RETIRED.STLB_MISS

DTLB_*_MISSES.WALK_DURATION
DTLB_*_MISSES.WALK_ACTIVE
DTLB_*_MISSES.WALK_PENDING
ITLB_MISSES.WALK_DURATION
ITLB_MISSES.WALK_PENDING

FRONTEND_RETIRED.ITLB_MISS

ITLB.TLB_FLUSH

ALL EVENTS IN RED ARE SPECULATIVE

Confidential + Proprietary

How is Google using all of this?

Confidential + Proprietary

Google production environment

● Everything runs in container groups (cgroups)
○ Cgroup: Linux resource encapsulation abstraction: cpuset, memory, …
○ Provides relative isolation

● Jobs are dispatched by a scheduling infrastructure called Borg
● Servers may be dedicated or shared between different jobs

L3 L3

cgroup A

HT0 HT1 HT0 HT1 HT0 HT1 HT0 HT1 HT0 HT1 HT0 HT1 HT0 HT1 HT0 HT1

cgroup B cgroup C

CorePackage CorePackage

Confidential + Proprietary

Google PMU data collector

● The perf tool is installed on all production servers
○ Can be invoked from remote via a dedicated daemon

● perf contains custom extensions
○ Handling of hugepage text
○ High level core and uncore PMU metrics

mem_bw (uncore metrics)
#--
Socket0 | Socket1 |
#--
RAM Bandwidth | RAM Bandwidth |
Wr Rd| Wr Rd|
MB/s MB/s| MB/s MB/s|
#--
 16.76 16.70 9.25 11.07

Topdown (core metrics)
#==
| topdown
|----------------------------------
| unit: issue slots
|----------------------------------
|FrontEnd Bad Uops BackEnd
| Bound Spec Retiring Bound
#==
 1.038100775 29.05% 7.32% 11.53% 52.10%

Confidential + Proprietary

Google-Wide-Profiler (GWP)

● Fleet wide profiler infrastructure
○ Collects performance monitoring data on XX% of fleet/day for xx secs

● At scale, GWP delivers useful profile despite collecting for a few seconds

● GWP collects PMU and other performance metrics per machine
○ Invokes perf record tool in system-wide mode on various PMU events
○ perf record invoked in pipe mode to avoid disk I/O. Data processed offline.

● Symbolizations challenge
○ Database of all symbols for all deployed binaries, tagged by BuildID

Google-Wide Profiling: A Continuous Profiling Infrastructure for Data Centers, Gang Ren,Eric Tune, Tipp Moseley, Yixin Shi,Silvius Rus,Robert Hundt, Google

https://ai.google/research/pubs/pub36575

Confidential + Proprietary

GWP architecture

Symbolizer

ServersServers
Collectors

Profile DB
(BigQuery)

Machine
Database

perf record

Software
Servers

...

CollectorsCollectorsProfile
Collectors

Package
Manager

WebserverWebserver
Webserver

Google-Wide Profiling: A Continuous Profiling Infrastructure for Data Centers, Gang Ren,Eric Tune, Tipp Moseley, Yixin Shi,Silvius Rus,Robert Hundt, Google, IEEE Micro 2010

https://ai.google/research/pubs/pub36575

Confidential + Proprietary

GWP usefulness

● Can help answer wealth of questions about how software runs fleet wide
● Classic queries:

○ What is the function consuming most cycles fleetwide? And which applications are calling it?
○ What is the application consuming most cycles fleetwide?
○ What library is most used?
○ Do we have a lot of TLB page walks? On which functions, binaries?

● Can drill down to specific binary version and assembly code

● Queries via a GUI, SQL, and programming

● Small improvements on hot functions make a huge difference at scale

Confidential + Proprietary

Function is tagged as hot by GWP
data

Confidential + Proprietary

Topdown on parts of Websearch

AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers,Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis,Trivikram Krishnamurthy,Heiner Litz, Tipp Moseley, ISCA’19

https://ai.google/research/pubs/pub48320

Confidential + Proprietary

AsmDB

● Goal is to have a database of nearly all executed instructions in our data-centers
○ Q: Are we executing x87 insn 'X' ? Q: What is the most common type of load addressing?
○ Ranking of insn
○ DB with one row per insn

● Uses LBR data to identify executed basic blocks
○ Only keep top 1000 binaries by cycles consumed: covers 90% of all cycles
○ Heavy offline post processing: basic block predecessors, identify loops
○ 600GiB/day of data!

● Data used for more advanced analysis
○ Spotting manual optimizations
○ Compiler optimization opportunities
○ Invaluable for code analysis: code working set, + GWP data icache misses and control flow
○ See example advanced analysis in frontend stall paper from Grant Ayers et al
AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale Computers,Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen Kanev, Christos
Kozyrakis,Trivikram Krishnamurthy,Heiner Litz, Tipp Moseley, Parthasarathy Ranganathan

https://ai.google/research/pubs/pub48320
https://ai.google/research/pubs/pub48320

Confidential + Proprietary

Automatic Feedback-Driven Optimization (autoFDO)

● Feedback-directed Optimization (FDO)
○ Use compiler to optimize code by providing execution information for load test run
○ Usually involved 2-pass compilation to instrument(1) and optimize(2)

● Google has lots of applications!

● Not every application has a representative benchmarks
○ Some cannot even create a benchmark (e.g., because hard to get good input data, scale)
○ Behavior may change based on day of the week or the month

● Traditional Feedback Driven Optimization (FDO) is not practical
○ Too much overhead, cannot deploy to production just to collect a profile

● How can we get the benefits of FDO without instrumenting code?
AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale Applications, Dehao Chen, David Xinliang Li, Tipp Moseley, Google, CGO’16

https://ai.google/research/pubs/pub45290

Confidential + Proprietary

Source Code

Instrumented
Binary ProfileRepresentative Loadtest

Optimized
Binary

-fprofile-generate

-fprofile-use

Traditional FDO

1. compile with profiling
instrumentation

2. run a load test
a. instrumentation

slowdown
b. representative input

hard, especially with
sensitive data and
dependent services

3. Recompile and release

Confidential + Proprietary

Source Code

Profile

Optimized
Binary-fauto-profile

AutoFDO

1. compile and release

pr
od

uc
tio

n
Available to ANY applications: live production, no loadtest needed

Confidential + Proprietary

AutoFDO pipeline
● LBR profiles collected via GWP

○ Used for basic block exec count
○ Submitted weekly to database

● Converted to source location
○ func, src offset to func start, disc

● Staleness of profiles
○ Changes for most apps are incremental

● Transformations
○ Straightening of hot paths
○ Indirect call promotions
○ Many more possible…

Binary
Index &
Symbols

machine

perf_events

Daemon

Collect
or

Collect
orCollector

Sample
Database

Source
Depot

Profile
Generator

Release
Binary
Archive

Ingestor

Compiler

Confidential + Proprietary

autoFDO: comparison with FDO

Speedups against -O2 binaries

Most of the benefit of traditional FDO without the recompilation, just a flag on the Makefile
AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale Applications, Dehao Chen, David Xinliang Li, Tipp Moseley, Google, CGO’16

https://ai.google/research/pubs/pub45290

Confidential + Proprietary

Borg: handling the noisy neighbor problem!
● Bigger machines = shared by more jobs = more resource pressures

○ One job (e.g., ML) can consume a lot of memory bandwidth and cause major slowdown to others

● Must identify antagonistic and limit damage
○ Per-job bandwidth monitoring using PMU (Intel OFFCORE_RESPONSE) or CacheQoS MBM (better)
○ Throttle if exceed set threshold using CacheQoS MBA and reduce job bandwidth quota

Ex: limit bw to 10% of peak for threads in mygrp
$ cd /sys/fs/resctrl; mkdir mygrp; cd mygrp
$ cat schemata
$ echo MB:0=100;1=100
$ echo “MB:0=10;1=10” > schemata
$ echo $$ >tasks
$ my_test <- runs capped at 10% of peak BW

La
te

nc
y

time

Antagonist task starts

Memory Bandwidth QoS, managing memory bandwidth antagonism @ Scale, David Lo, Dragoss Sbirlea, Rohit Jnagal, LPC’18

https://www.youtube.com/watch?v=29b7n2rqWVM

Confidential + Proprietary

PMU challenges
● Event Validation

○ How to validate all the core and uncore PMU events to remove bugs very early?

● Events vs. counters
○ Want more events to measure more conditions
○ Want more counters to avoid multiplexing
○ But more counters = larger machine state to manage in the kernel

● Better events that count metrics we care about
○ Monitoring vs. debugging, metric events (such as PERF_METRICS) are very useful

● Better identification of true costs
○ Hard with massive speculative execution

● Overhead management
○ More complex data = more processing = more overhead

● Assigning blame to jobs
○ Challenging for any offcore micro-architectural feature (such as L3 cache)

Confidential + Proprietary

Linux PMU support challenges
● Bigger Machines = bigger pressure on the monitoring subsystem

○ AMD Zen2 : 256 CPUs!

● At scale, many rare corner cases become visible quickly

● Serious scalability issues in the perf_events interface and implementation
○ File descriptors, memory footprint, algorithmic complexity

● Perf tool scalability issues
○ Parsing of /proc/PID/maps very racy and can generate sampe symbolization issues
○ BuildID collection very expensive in CPU and memory footprint
○ Single threaded processing, single output file on 256 CPUs!

● Perf tool robustness
○ Many sanitizer failures

● Patches are being submitted to address these challenges
○ See our Linux Plumbers Conference’19 presentation on this topic here

https://www.linuxplumbersconf.org/event/4/contributions/291/attachments/313/528/Linux_Plumbers_Conference_2019.pdf

Confidential + Proprietary

Perf_events scalability example: file descriptors

● Large number of file descriptors (fds): 1 fd/event/cpu/cgroup
○ 100 cgroups, SkylakeX (112 CPUs), 6 events/cgroup = 112 x 100 x 6 = 67,200 fds
○ 200 cgroups, AMD Zen2 (256 CPUs), 6 events/cgroup = 200 x 256 x 6 = 307,200 fds

● Large number of events per-cpu:
○ 100 cgroups, SkylakeX (112 CPUs), 6 events/cgroup = 100 x 6 = 600 events/CPU
○ 200 cgroups. AMD Zen2 (256 CPUs), 6 events/cgroup = 256 x 6 = 1536 events/CPU

Structure names Size
(bytes)

Intel SkylakeX
Total size (bytes)

AMD Rome
Total size (bytes)

struct file 256 17MB 78MB

struct perf_event 1136 76MB 348MB

TOTAL
4KB Pages

93MB
22,705

427MB
104,400

Source: Linux-5.3-rc3, pahole

Confidential + Proprietary

Final thoughts

● PMU is now a critical part of the any CPU package

● Overall PMU features and quality have improved over the last 10 years

● CacheQoS is another important CPU feature required for data-centers

● Tools have improved but still lag behind hardware too often

● Scalability of tools and kernel monitoring subsystem is a challenge today

THANK YOU

