

Arm® Neoverse™ N2
Revision: r0p3

PMU Guide
Non-Confidential Issue 3.0
Copyright © 2024 Arm Limited (or its affiliates).
All rights reserved.

PJDOC-466751330-590448

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 92

Arm® Neoverse™ N2
PMU Guide

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 July 14, 2022 Non-Confidential First release

2.0 December 16, 2022 Non-Confidential Update for extra memory related events

3.0 March 5, 2024 Non-Confidential Update for errata details, and adding list of metrics

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express
prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, has undertaken no analysis to identify or understand the scope and
content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to
assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws. Use of the word “partner” in reference to Arm's customers is not intended to create or refer to
any partnership relationship with any other company. Arm may make changes to this document at any time
and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version
of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 92

in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage
guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by Arm and the party that
Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that
can be offensive. Arm strives to lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue
of this document. If you find offensive terms in this document, please email terms@arm.com.

https://www.arm.com/company/policies/trademarks
https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 92

Contents

Table of Contents

1 Introduction.. 10

1.1 Product revision status .. 10

1.2 Intended audience ... 10

1.3 Conventions... 10
1.3.1 Glossary ...10
1.3.2 Typographical conventions...11

1.4 Additional reading ... 11

1.5 Feedback ... 13
1.5.1 Feedback on this product ...13
1.5.2 Feedback on content ...13

2 Overview .. 14

2.1 Scope ... 14

3 Architecture and micro-architecture definitions ... 15

3.1 Arm Architecture definitions... 15
3.1.1 Attributability ...15
3.1.2 PMU Version ..15
3.1.3 Speculatively executed versus architecturally executed ..16
3.1.4 Taken locally ...16
3.1.5 Aligned/unaligned memory access ..17
3.1.6 Scalable Vector Extension ..17
3.1.7 Statistical Profiling Extension (SPE) ...18
3.1.8 Memory Transaction Extension (MTE) ...18

3.2 Neoverse N2 micro-architecture information .. 19
3.2.1 CPU and DynamIQ shared unit configuration ...19
3.2.2 Pipeline and operations...20
3.2.3 Out of order execution ...21
3.2.4 Architecturally defined events ...21
3.2.5 Cache architecture...22
3.2.6 Cache line sizes ..22
3.2.7 Data side cache allocation ..23
3.2.8 Instruction side cache allocation..23
3.2.9 Cache stashing ...23
3.2.10 Cache terminology and behavior ...23
3.2.11 Cache Maintenance Operations ..23
3.2.12 Cache coherency ...23
3.2.13 L2 cache and memory interface ..24
3.2.14 Cache lookup ..24

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 92

3.2.15 Cache eviction ..24
3.2.16 Unaligned accesses..25
3.2.17 Memory Management Unit behavior..25
3.2.18 TLB behavior ..25
3.2.19 TLB maintenance operations ...26
3.2.20 Memory error behavior...26
3.2.21 Coherent Mesh Network configuration ...27

4 PMU event descriptions .. 28

4.1 TLB and MMU related events ... 28
4.1.1 0x02, L1I_TLB_REFILL, L1 instruction TLB refill ...29
4.1.2 0x05, L1D_TLB_REFILL, L1 data TLB refill ...29
4.1.3 0x1C, TTBR_WRITE_RETIRED, TTBR write architecturally executed ...29
4.1.4 0x25, L1D_TLB, Level 1 data TLB access ...29
4.1.5 0x26, L1I_TLB, Level 1 instruction TLB access ..30
4.1.6 0x2D, L2D_TLB_REFILL, Attributable L2 unified TLB refill ...30
4.1.7 0x2F, L2D_TLB, Attributable L2 unified TLB access...30
4.1.8 0x34, DTLB_WALK, Access to data TLB that caused a translation (or page) table walk30
4.1.9 0x35, ITLB_WALK, Access to instruction TLB that caused a page table walk30
4.1.10 0x4C, L1D_TLB_REFILL_RD, L1 data TLB refill, read ...30
4.1.11 0x4D, L1D_TLB_REFILL_WR, L1 data TLB refill, write ..31
4.1.12 0x4E, L1D_TLB_RD, L1 data TLB access, read ..31
4.1.13 0x4F, L1D_TLB_WR, L1 data TLB access, write..31
4.1.14 0x5C, L2D_TLB_REFILL_RD, L2 unified TLB refill, read ..31
4.1.15 0x5D, L2D_TLB_REFILL_WR, L2 unified TLB refill, write ..32
4.1.16 0x5E, L2D_TLB_RD, L2 unified TLB access, read ...32
4.1.17 0x5F, L2D_TLB_WR, L2 unified TLB access, write ...32

4.2 L1 data cache related events ... 33
4.2.1 0x03, L1D_CACHE_REFILL, L1 data cache refill ...33
4.2.2 0x04, L1D_CACHE, L1 data cache access ..34
4.2.3 0x15, L1D_CACHE_WB, L1 data cache write-back ..34
4.2.4 0x39, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency miss ..34
4.2.5 0x40, L1D_CACHE_RD, L1 data cache access, read...34
4.2.6 0x41, L1D_CACHE_WR, L1 data cache access, write ..35
4.2.7 0x42, L1D_CACHE_REFILL_RD, L1 data cache refill, read ..35
4.2.8 0x43, L1D_CACHE_REFILL_WR, L1 data cache refill, write..35
4.2.9 0x44, L1D_CACHE_REFILL_INNER, L1 data cache refill, inner ..35
4.2.10 0x45, L1D_CACHE_REFILL_OUTER, L1 data cache refill, outer ..35
4.2.11 0x46, L1D_CACHE_WB_VICTIM, L1 data cache write-back, victim ...36
4.2.12 0x47, L1D_CACHE_WB_CLEAN, L1 data cache write-back cleaning and coherency...............36
4.2.13 0x48, L1D_CACHE_INVAL, L1 data cache invalidate ..36

4.3 L1 instruction cache related events .. 37
4.3.1 0x01, L1I_CACHE_REFILL, L1 instruction cache refill ..37
4.3.2 0x14, L1I_CACHE, Level 1 instruction cache access ..37
4.3.3 0x4006 L1I_CACHE_LMISS L1 instruction cache long latency miss ..37

4.4 L2 cache related events ... 38
4.4.1 0x16, L2D_CACHE, L2 cache access ..38
4.4.2 0x17, L2D_CACHE_REFILL, L2 cache refill ..39
4.4.3 0x18, L2D_CACHE_WB, L2 cache write-back ..39

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 92

4.4.4 0x20, L2D_CACHE_ALLOCATE, L2 cache allocation without refill ...39
4.4.5 0x50, L2D_CACHE_RD, L2 cache access, read ...39
4.4.6 0x51, L2D_CACHE_WR, L2 cache access, write ...39
4.4.7 0x52, L2D_CACHE_REFILL_RD, L2 cache refill, read ...40
4.4.8 0x53, L2D_CACHE_REFILL_WR, L2 cache refill, write ..40
4.4.9 0x56, L2D_CACHE_WB_VICTIM, L2 cache write-back, victim ..40
4.4.10 0x57, L2D_CACHE_WB_CLEAN, L2 cache write-back, cleaning and coherency40
4.4.11 0x58, L2D_CACHE_INVAL, L2 cache invalidate ...40
4.4.12 0x108, L2D_CACHE_REFILL_INST, L2 cache refill, fetch ..41
4.4.13 0x4009 L2D_CACHE_LMISS_RD L2 cache long latency miss ..41

4.5 L3 cache/external system cache related events .. 42
4.5.1 0x29, L3D_CACHE_ALLOCATE, Attributable Level 3 data cache allocation without refill42
4.5.2 0x2A, L3D_CACHE_REFILL, Attributable Level 3 unified cache refill ..43
4.5.3 0x2B, L3D_CACHE, Attributable Level 3 unified cache access ..43
4.5.4 0x36, LL_CACHE_RD, Last level cache access, read ..43
4.5.5 0x37, LL_CACHE_MISS_RD, Last level cache miss, read ...43
4.5.6 0xA0, L3_CACHE_RD, L3 cache read ...44
4.5.7 0x400B L3D_CACHE_LMISS_RD L3 cache long latency miss ..44

4.6 Memory system related events .. 45
4.6.1 0x13, MEM_ACCESS, Data memory access ..46
4.6.2 0x19, BUS_ACCESS, Bus access ..46
4.6.3 0x1A, MEMORY_ERROR, Local memory error ...46
4.6.4 0x31, REMOTE_ACCESS, Access to another socket in a multi-socket system47
4.6.5 0x60, BUS_ACCESS_RD, Bus access read..47
4.6.6 0x61, BUS_ACCESS_WR, Bus access write. ..47
4.6.7 0x66, MEM_ACCESS_RD, Data memory access, read ...47
4.6.8 0x67, MEM_ACCESS_WR, Data memory access, write ...48
4.6.9 0x4020 LDST_ALIGN_LAT Access with additional latency from alignment48
4.6.10 0x4021 LD_ALIGN_LAT Load with additional latency from alignment48
4.6.11 0x4022 ST_ALIGN_LAT Store with additional latency from alignment48
4.6.12 0x4024 MEM_ACCESS_CHECKED Checked data memory access ...49
4.6.13 0x4025 MEM_ACCESS_RD_CHECKED Checked data memory access, read49
4.6.14 0x4026 MEM_ACCESS_WR_CHECKED Checked data memory access, write49

4.7 Pipeline related events ... 50
4.7.1 0x23, STALL_FRONTEND, No operation issued due to the front end ..50
4.7.2 0x24, STALL_BACKEND, No operation issued due to the back end ...50
4.7.3 0x3C STALL No operation sent for execution ...51
4.7.4 0x3D STALL_SLOT_BACKEND No operation sent for execution on a slot due to the back end 51
4.7.5 0x3E STALL_SLOT_FRONTEND No operation sent for execution on a slot due to the front end
 51
4.7.6 0x3F STALL_SLOT No operation sent for execution on a slot ..51
4.7.7 0x4005 STALL_BACKEND_MEM No operation sent due to the back end and memory stalls ..52

4.8 Load or store instruction related events .. 53
4.8.1 0x68, UNALIGNED_LD_SPEC, Unaligned access, read..54
4.8.2 0x69, UNALIGNED_ST_SPEC, Unaligned access, write ...54
4.8.3 0x6A, UNALIGNED_LDST_SPEC, Unaligned access ..54
4.8.4 0x6C, LDREX_SPEC, Exclusive load speculatively executed ...54
4.8.5 0x6D, STREX_PASS_SPEC, Successful exclusive store speculatively executed54
4.8.6 0x6E, STREX_FAIL_SPEC, Failed exclusive store speculatively executed54

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 92

4.8.7 0x6F, STREX_SPEC, Exclusive store speculatively executed ..54
4.8.8 0x70, LD_SPEC, Load instruction speculatively executed ...55
4.8.9 0x71, ST_SPEC, Store instruction speculatively executed ...55
4.8.10 0x7D, DSB_SPEC, DSB speculatively executed ..55
4.8.11 0x7E, DMB_SPEC, DMB speculatively executed ..55
4.8.12 0x90, RC_LD_SPEC, Load-acquire operation speculatively executed ...55
4.8.13 0x91, RC_ST_SPEC, Store-release operation speculatively executed55

4.9 General instruction related events ... 56
4.9.1 0x08, INST_RETIRED, Instruction architecturally executed ..56
4.9.2 0x1B, INST_SPEC, Instruction speculatively executed ...56
4.9.3 0x73, DP_SPEC, Integer data-processing instruction speculatively executed56
4.9.4 0x76, PC_WRITE_SPEC, PC write instruction speculatively executed ..57
4.9.5 0x77, CRYPTO_SPEC, Crypto instruction speculatively executed ...57
4.9.6 0x7C, ISB_SPEC, ISB speculatively executed...57
4.9.7 0x3A OP_RETIRED Micro-operation architecturally executed ...57
4.9.8 0x3B OP_SPEC Micro-operation speculatively executed ..57

4.10 ... Branch related events
 58

4.10.1 0x10, BR_MIS_PRED, Mispredicted or not predicted branch speculatively executed58
4.10.2 0x12, BR_PRED, Predictable branch speculatively executed ..58
4.10.3 0x21, BR_RETIRED, Branch instruction architecturally executed ..58
4.10.4 0x22, BR_MIS_PRED_RETIRED, Mispredicted branch instruction architecturally executed ...58
4.10.5 0x78, BR_IMMED_SPEC, Branch immediate instructions speculatively executed59
4.10.6 0x79, BR_RETURN_SPEC, Procedure return instruction speculatively executed59
4.10.7 0x7A, BR_INDIRECT_SPEC, Indirect branch instruction speculatively executed59

4.11 .. Exception related events
 60

4.11.1 0x09, EXC_TAKEN, Exception taken ..60
4.11.2 0x0A, EXC_RETURN, Exception return ..60
4.11.3 0x81, EXC_UNDEF, Undefined exceptions taken locally ..61
4.11.4 0x82, EXC_SVC, Supervisor Call exception taken locally ..61
4.11.5 0x83, EXC_PABORT, Instruction abort exception taken locally ...61
4.11.6 0x84, EXC_DABORT, Data abort or SError taken locally ..61
4.11.7 0x86, EXC_IRQ, IRQ exception taken locally ..61
4.11.8 0x87, EXC_FIQ, FIQ exception taken locally ...61
4.11.9 0x88, EXC_SMC, Secure Monitor Call exception..61
4.11.10 0x8A, EXC_HVC, Hypervisor Call exception ...61
4.11.11 0x8B, EXC_TRAP_PABORT, Instruction abort exception not taken locally62
4.11.12 0x8C, EXC_TRAP_DABORT, Data abort or SError not taken locally ...62
4.11.13 0x8D, EXC_TRAP_OTHER, Other exception not taken locally ...62
4.11.14 0x8E, EXC_TRAP_IRQ, IRQ exception not taken locally ..62
4.11.15 0x8F, EXC_TRAP_FIQ, FIQ exception not taken locally ..62

4.12 ... General CPU related events
 63

4.12.1 0x00, SW_INCR Software increment ...63
4.12.2 0x0B, CID_WRITE_RETIRED, CONTEXTIDR register write ..63
4.12.3 0x11, CPU_CYCLES, Cycles ...63
4.12.4 0x1D, BUS_CYCLES, Bus cycles ..63
4.12.5 0x1E, COUNTER_OVERFLOW, PMU counter overflow increment ..64

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 92

4.12.6 0x4004 CNT_CYCLES Constant frequency cycles ...64

4.13 ... SVE, Floating point, and SIMD related events
 65

4.13.1 0x74, ASE_SPEC, Advanced SIMD operation speculatively executed ...66
4.13.2 0x75, VFP_SPEC, Floating point operation speculatively executed ...66
4.13.3 0x8005, ASE_INST_SPEC, Advanced SIMD operations speculatively executed66
4.13.4 0x8006, SVE_INST_SPEC, SVE operations speculatively executed ...66
4.13.5 0x8014, FP_HP_SPEC, Half-precision floating-point operation speculatively executed66
4.13.6 0x8018, FP_SP_SPEC, Single-precision floating-point operation speculatively executed66
4.13.7 0x801C, FP_DP_SPEC, Double-precision floating-point operation speculatively executed67
4.13.8 0x8074, SVE_PRED_SPEC, SVE predicated operations speculatively executed67
4.13.9 0x8075, SVE_PRED_EMPTY_SPEC, SVE predicated operations with no active predicates
speculatively executed ..67
4.13.10 0x8076, SVE_PRED_FULL_SPEC, SVE predicated operations speculatively executed with all
active predicates ..67
4.13.11 0x8077, SVE_PRED_PARTIAL_SPEC, SVE predicated operations speculatively executed with
partially active predicates ...68
4.13.12 0x8079, SVE_PRED_NOT_FULL_SPEC, SVE predicated operations speculatively executed
with a Governing predicate in which at least one element is FALSE ..68
4.13.13 0x80BC, SVE_LDFF_SPEC, SVE First-fault load operations speculatively executed68
4.13.14 0x80BD, SVE_LDFF_FAULT_SPEC, SVE First-fault load operations speculatively executed
which set FFR bit to 0 ...68
4.13.15 0x80C0, FP_SCALE_OPS_SPEC, Scalable floating-point element operations speculatively
executed ..68
4.13.16 0x80C1, FP_FIXED_OPS_SPEC, Non-scalable floating-point element operations speculatively
executed ..69
4.13.17 0x80E3, ASE_SVE_INT8_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest
type is 8-bit integer..69
4.13.18 0x80E7, ASE_SVE_INT16_SPEC, Operation counted by ASE_SVE_INT_SPEC where the
largest type is 16-bit integer ..69
4.13.19 0x80EB, ASE_SVE_INT32_SPEC, Operation counted by ASE_SVE_INT_SPEC where the
largest type is 32-bit integer ..69
4.13.20 0x80EF, ASE_SVE_INT64_SPEC, Operation counted by ASE_SVE_INT_SPEC where the
largest type is 64-bit integer ..69

4.14 .. SPE related events
 70

4.14.1 0x4000, SAMPLE_POP, Sample population ..70
4.14.2 0x4001, SAMPLE_FEED, Sample taken ...70
4.14.3 0x4002, SAMPLE_FILTRATE, Sample taken and not removed by filtering70
4.14.4 0x4003 SAMPLE_COLLISION Sample collided with previous sample71

5 CPU memory system flows .. 72

5.1 Data side TLB access for a load instruction .. 73

5.2 Data side TLB access for a store instruction ... 74

5.3 Instruction side TLB access ... 75

5.4 L1 Data cache read access .. 76

5.5 L1 Data cache write access ... 77

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 92

5.6 Instruction side cache access .. 78

5.7 L2 cache read access ... 79

5.8 L2 cache write access ... 80

6 Metrics .. 81

6.1 Metric formulas ... 81

6.2 Event Rates .. 81

6.3 TLB and MMU Related Metrics... 82

6.4 Cache Metrics .. 83

6.5 Pipeline Metrics ... 84

6.6 Memory System Events.. 85

Appendix A Revisions ... 86

Appendix B ... List of PMU events by number
 87

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 92

1 Introduction

1.1 Product revision status
The rxpy identifier indicates the revision status of the product described in this book, for example,
r1p1, where:

rx

 Identifies the major revision of the product, for example, r1.

py

 Identifies the minor revision or modification status of the product, for example, p1.

1.2 Intended audience
This document is intended for software developers running code on the Neoverse N2.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

1.3.1 Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

https://developer.arm.com/glossary

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 92

1.3.2 Typographical conventions
Convention Use

italic Introduces citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for
terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program
names, and source code.

monospace bold Denotes language keywords when used outside example code.

monospace

underline
Denotes a permitted abbreviation for a command or option. You can enter the underlined
text instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:
MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined
in the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC,
UNKNOWN, and UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or
damage.

This represents a requirement for the system that, if not followed, might result in system
failure or damage.

This represents a requirement for the system that, if not followed, will result in system
failure or damage.

This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

This is a reminder of something important that relates to the information you are reading.

1.4 Additional reading
This document contains information that is specific to this product. See the following documents
for other relevant information:

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 92

Table 1-1 Arm publications

Document name Document ID Licensee only

Arm® Architecture Reference Manual for A-profile
architecture

DDI 0487J.a
(ID042523)

No

Arm® Architecture Reference Manual Supplement
Armv9, for Armv9-A architecture profile

DDI0608 B.a No

Arm® Architecture Reference Manual Supplement The
Scalable Vector Extension (SVE) for Armv8-A

DDI 0584 B.a No

Arm® Neoverse™ N2 Core Revision: r0p3 Technical
Reference Manual

102099 No

Arm® DynamIQ™ Shared Unit-110 Revision: r4p0
Technical Reference Manual

101381 No

Arm® Neoverse™ N2 Software Optimization Guide PJDOC-466751330-
18256

No

Arm Neoverse N2 (MP128) Software Developer Errata
Notice

SDEN-1982442 No

Arm Cortex-A Series Programmers Guide for Armv8-A DEN0024A No

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 92

1.5 Feedback
Arm welcomes feedback on this product and its documentation.

1.5.1 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

1.5.2 Feedback on content

If you have comments on content, send an email to errata@arm.com and give:

• The title Arm® Neoverse™ N2 PMU Guide.

• The number PJDOC-466751330-590448.

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader and cannot guarantee the quality
of the represented document when used with any other PDF reader.

mailto:errata@arm.com?subject=Feedback%20on%20content

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 92

2 Overview
This document describes the behavior of the different Performance Monitor Unit (PMU) events
implemented in the Neoverse N2.

The Neoverse N2 has six programmable 32-bit counters (counters 0-5), and each individual
counter can be programmed to count when one of the PMU events described in this document
occurs.

2.1 Scope
This document provides high level descriptions of Neoverse N2 PMU events. There are references
to both architectural behavior and Neoverse N2 micro-architectural behavior that clarify those
event descriptions. For more complete descriptions of the Arm Architecture, please refer to the
Arm® Architecture Reference Manual. For more detailed descriptions of the Neoverse N2, please
refer to the Arm® Neoverse™ N2 Technical Reference Manual.

This document does not discuss using software development tools or a performance analysis
program (such as Linux perf), to program the Neoverse N2 PMUs.

Certain PMU events may be discussed in the Neoverse N2 Software Developer Errata Notice (SDEN).
Users are encouraged to check that document for information about events that they are using.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 92

3 Architecture and micro-
architecture definitions
This section provides additional information regarding relevant areas of the Arm Architecture and
details of the Neoverse N2 micro-architecture. This section covers architectural and micro-
architectural functional areas that affect the behavior of the different PMU events implemented in
the Neoverse N2.

Please note that this section is not intended to be a complete guide for either the architectural or
micro-architectural behavior of the Neoverse N2. For a more complete overview of architectural
behavior, please reference:

• Arm Cortex-A Series Programmers Guide for Armv8-A

• A-Profile architecture guides available on https://developer.arm.com.

• The Definitions section of the PMU Event chapter in the Arm® Architecture Reference Manual

3.1 Arm Architecture definitions
The Glossary section of the Arm® Architecture Reference Manual contains definitions for different
architectural terms used for PMU event descriptions. This section provides additional explanations
for some of those terms (particularly ones that apply to the Neoverse N2).

Please note that in all cases, the actual specifications in the Arm® Architecture Reference Manual
should be used.

3.1.1 Attributability

Some event descriptions reference the term "attributability", which is defined in the PMU section
of the Arm® Architecture Reference Manual. Usually, that term refers to whether or not an event
can be attributed to a single Processing element (PE). Attributability can mean two things in this
context:

• Attributable to a hardware thread in a simultaneous multithreading (SMT) CPU. Since the
Neoverse N2 is not multi-threaded, attributable used in this sense is not applicable.

• Attributable to a particular CPU in a multi-CPU cluster or system. Where the term applies to
other CPUs in the system, it is specifically addressed in the PMU event description.

3.1.2 PMU Version

The Neoverse N2 implements PMUv3p5 for Armv8.5. That information is specified in the PMUVer
bits in the ID_AA64DFR0_EL1 register. In Section D19.2.59 of the Arm® Architecture Reference
Manual, bits [11:8] of ID_AA64DFR0_EL1 indicate the PMUVer assignment. The Arm® Neoverse™
N2 Technical Reference Manual lists PMUVer as 0b0110. The Arm® Architecture Reference Manual
indicates that the value 0b0110 implements FEAT_PMUv3p5.

https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 92

3.1.3 Speculatively executed versus architecturally executed

The Arm Architecture makes a distinction between an instruction which is speculatively executed
versus an instruction which is architecturally executed. For example, instructions following a
branch instruction (where the branch condition has been predicted by the CPU) are considered
speculatively executed until the branch is resolved. Instructions could also be abandoned if an
interrupt or exception from a previously executed instruction occur. Architecturally executed
instructions update the architectural state of the CPU when they complete.

If the branch is mispredicted, and the instructions are speculatively executed, they will not be
considered architecturally executed. The Arm® Architecture Reference Manual also refers to
architecturally executed instructions as “retired” or “committed”. Speculatively executed
instructions that are not architecturally executed will be abandoned; that is, their results will be
discarded and not counted as part of the program flow.

An instruction is considered architecturally executed when that instruction is found to be on the
correct execution path of the program flow. While the Neoverse N2 CPU can execute instructions
out of order, architecturally executed instructions are always resolved in program order. Please see
the Out of Order Execution section below.

Many PMU events measure speculatively executed operations. The Arm® Architecture Reference
Manual says "The definition of speculatively executed does not mean only those operations that
are executed speculatively and later abandoned, for example due to a branch misprediction or
fault. That is, speculatively executed operations must count operations on both false and correct
execution paths."

That definition means that events that count speculatively executed instructions will count
instructions that were architecturally executed as well as instructions that were not architecturally
executed.

For more information, please read the definitions of “Speculative” and “Architecturally executed” in
the Glossary section of the Arm® Architecture Reference Manual.

3.1.4 Taken locally

The Arm® Architecture Reference Manual glossary defines "taken locally" as an exception taken
without being virtualized; in effect, the exception is taken by the host kernel. For exceptions to be
considered taken locally, one of the following conditions must apply:

• The kernel is running in EL1

• The kernel is running in EL2 and the host virtualization extensions are enabled (HCR_EL2.E2H
and TGE are both set to 1)

Please note that some of the exception events do not use that definition. For example, an HVC
exception would normally be taken locally in EL2 (since the hypervisor runs in EL2), and an SMC
exception would be taken in EL3.

Exceptions caused by speculatively executed instructions or speculative memory accesses will not
be taken until the instruction that caused that exception condition is architecturally executed.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 92

3.1.5 Aligned/unaligned memory access

Memory accesses are aligned if the address for the access is a multiple of the data size. For
example, a word (32-bit access) is aligned if the address ends in 0x00, 0x04, 0x08, or 0x0C. If the
address is not on an aligned boundary, then it is unaligned. For example, a word access that has an
address ending in 0x01, 0x02, 0x03, 0x05, 0x06, is unaligned.

While the CPU can process data-side accesses to unaligned addresses for normal memory, the
CPU issues aligned accesses to the memory system. For example, with a 32-bit access located at
an address ending in 0x01, the CPU would issue a larger access, such as a 64-bit access starting at
the address ending in 0x00.

Please note that if an access is cacheable, and the data is not present in the cache, then the entire
cache line containing that data may be brought into the cache. Cache lines are also aligned to the
cache line size

Cache line size is discussed in section 3.2.6, Cache Line Sizes.

3.1.6 Scalable Vector Extension

Scalable Vector Extension (SVE) is an extension to the Arm Architecture. SVE and SVE2 (which are
both implemented on the Neoverse N2) are Single Instruction Multiple Data (SIMD) instruction sets.
A register operand can contain multiple values in different “lanes”. In the original SIMD extension
to the Arm Architecture (NEON), all lanes in a register operand were the same size. However, SVE
allows for different size values in different lanes.

In SVE, the instruction set operates on a set of vector and predicate registers: 32 Z registers, 16 P
registers, and one First Faulting Register (FFR):

The Z registers are data registers. On the Neoverse N2, Z registers are 128 bits wide data
registers. Data in these registers can be interpreted as 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit
elements. The low 128 bits of each Z register overlap the corresponding Neon registers and the
corresponding scalar floating-point registers.

The P registers hold one bit for each byte available in a Z register. Accordingly, a P register is
always 1/8th the size of a Z register. Predicated instructions use a P register to determine which
vector elements to process. Each individual bit in the P register specifies whether the
corresponding byte in the Z register is active or inactive.

The FFR register is a dedicated predicate register that that captures the cumulative fault status of a
sequence of SVE vector load instructions. SVE provides a first-fault option for some SVE vector
load instructions. This option suppresses memory access faults if they do not occur as a result of
the first active element of the vector. Instead, the FFR is updated to indicate which of the active
vector elements were not successfully loaded.

Both P registers and the FFR register are unique to SVE.

For more information about SVE, see the Arm® Architecture Reference Manual Supplement The
Scalable Vector Extension (SVE) for Armv8-A.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 92

3.1.7 Statistical Profiling Extension (SPE)

The Statistical Profiling Extension (SPE) allows programmers to select a micro-operation and use a
statistical view of the performance characteristics of that operation. That information can be used
to optimize code.

Section 22, Statistical Profiling Extension support, in the Arm® Neoverse™ N2 Technical Reference
Manual contains more information about SPE.

3.1.8 Memory Transaction Extension (MTE)

Memory Tagging Extension (MTE) is an extension to the Arm Architecture. MTE provides a
mechanism to automatically check memory accesses between a tag previously assigned to the
memory location and a tag issued by the CPU with the memory access. Four-bit tags are generated
for physical addresses and are cached and kept coherent, using the same mechanism that is used
to keep data coherent. Tags can be included in unused upper bits of virtual addresses and are
checked by the interconnect or by the cache logic.

Checked and unmatched memory accesses will generate a synchronous abort.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 92

3.2 Neoverse N2 micro-architecture information
The Neoverse N2 implements the Armv9-A architecture. However, there are several processor
features such as pipeline and caches that are implementation specific. This section defines those
features and behaviors.

Please note that Arm documentation may refer to CPUs as “cores”. This document refers to the
Neoverse N2 CPU, but that term can be used interchangeably with the term “core”.

3.2.1 CPU and DynamIQ shared unit configuration

The Neoverse N2 is required to have the DynamIQ Shared Unit (DSU) as an interface between the
CPU and the external interconnect. The DSU is a separate piece of logic, and contains all external
interfaces for the Neoverse N2, including the bus interface, the power management interface, the
interrupt controller interface, as well as all power and clocking interfaces.

The Neoverse N2 must be implemented using the Direct Connect configuration of the DSU. In the
Direct Connect implementation, there is a single Neoverse N2 inside the DSU, and the DSU does
not have an L3 cache or associated logic (such as a snoop control unit). Memory transactions to
and from the Neoverse N2 pass directly through the DSU wrapper. This configuration requires a
special connection in the associated Coherent Mesh Network (CMN) CHI-based interconnect.

Unlike some previous Neoverse CPUs, there is no option for multiple CPUs inside a DSU.

For more information on the DSU, please see the Arm® DynamIQ™ Shared Unit-110 Technical
Reference Manual.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 92

3.2.2 Pipeline and operations

The following diagram shows the high-level Neoverse N2 instruction processing pipeline.

Figure 1:

The Neoverse N2 pipeline fetches instructions which (after some decoding) proceed through the
pipeline register renaming and dispatch stages. Those decoded instructions could be split further
into two micro-operations (uops) at dispatch stage. Once dispatched, uops wait for their operands
and then the issue stage sends uops out-of-order to one of thirteen execution pipelines. There are
multiple issue queues in the issue stage, but each execution pipeline can accept and complete one
uop per cycle.

Fetch
Decode,
Rename,
Dispatch

Load/ Store 1

Integer Single-Cycle 0

Integer Single-Cycle 1

Integer Single/Multi-Cycle 0

FP/ASIMD 0

FP/ASIMD 1

Load/ Store 0

Branch 0

IN ORDER OUT OF ORDER

FRONT END BACK END

Store data 1

Store data 0

Load 2

Branch 1

Integer Single/Multi-Cycle 1

Is
su

e

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 92

Please note that while some less complex instructions (for example, ADD or MOV) may be issued
as a single micro-operation, other instructions may be broken down into two micro-operations.
Arm does not publish the list of micro-operations.

For PMU event definitions, some events specifically count instructions, while other events count
micro-operations (which are referred to as operations). Please be aware of the use of the word
"operations" or "instructions" in the event description.

3.2.3 Out of order execution

The Neoverse N2 pipeline can issue and speculatively execute instructions out of order. If there is
not a data dependency between different instructions, those different instructions can
speculatively execute out of order and save their results. That allows the pipeline to issue
instructions to the different back-end pipelines so that the pipeline is executing as many
instructions as possible.

Those speculatively executed instructions can be committed or resolved to being architecturally
executed. Architecturally executed instructions are always resolved in program order.

Because of changes in program control flow, speculatively executed instructions may not be
architecturally executed. For example, if instructions were speculatively executed after a
mispredicted branch instruction, those speculatively executed instructions would be abandoned.
Instructions could also be abandoned if an exception is taken. When one of those conditions
occurs, the CPU will determine in the program flow where the last architecturally instruction was,
and then the remaining instructions will be abandoned (even if some of them have already
speculatively executed). Those speculatively executed (but abandoned) instructions could be
executed again following the return from exception.

Memory load instructions (for normal memory) can also be executed speculatively. By architectural
definition, read accesses to normal memory can be repeated. If the CPU issues a memory load
operation that is later abandoned, memory related PMU events may count (if the actual memory
access completed). The specific PMU event descriptions will discuss those conditions.

3.2.4 Architecturally defined events

Most of the PMU events listed in this guide are architecturally defined and are listed in the
Performance Monitors Extension section of the Arm® Architecture Reference Manual. However, some
architecturally defined events are not implemented on the Neoverse N2.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 92

3.2.5 Cache architecture

The Neoverse N2 implements separate 64K instruction (I-side) and data (D-side) Level 1 caches,
and a unified L2 cache. The following describes the Neoverse N2 cache behavior:

• Allocate on read/write: any cacheable memory access will attempt to allocate a cache line
inside the Neoverse N2 caches.

• Write-back caches: data written to the caches will not update the next level of cache or
external memory unless the cache line is evicted or there is an explicit request by a cache
maintenance operation.

Figure 2 shows the different caches in a typical Neoverse N2 implementation. There could be
additional levels of user implemented cache in external memory, but those cache levels will not
affect the PMU events described here.

Figure 2:

3.2.6 Cache line sizes

Cache lines in the Neoverse N2 and other v9-A CPUs are 64 bytes (16 words) long. Whenever
data is allocated into a cache, or written back or evicted from a cache, the full cache line will be
read in or written out. While individual 32-bit words or 64-bit double words may be read into a
cache first (those are known as critical words – the direct word that a load or store instruction
specifies), the entire cache line around that word will be allocated into the cache. The CPU will be
able to access the critical word first before the rest of the cache line has been read in.

The Neoverse N2 caches are set-associative caches; that is, there are multiple ways of cache lines
in the cache where a particular address could be stored. Both L1 caches are 4-way set-associative
caches, and the L2 cache is 8-way set-associative. When the PMU event descriptions use the term
“full” with respect to a cache, a particular set where a line could be stored is full.

M
M

U

I-Cache

D-Cache

Neoverse N2
B

u
s

In
te

rf
ac

e
U

n
it

 C
H

I I
n

te
rc

o
n

n
ec

t

L2
 C

ac
h

e

P
ip

el
in

e

DSU direct connect cluster

System
Level
Cache
(SLC)

CMN

Ex
te

rn
al

 m
em

o
ry

L2
 M

em
o

ry
 S

ys

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 92

For example, out of the full 64K cache, an L1 cache could have only 4 cache lines allocated to it. If
all 4 cache lines are in the same set, and another cache line that would also be allocated to that set
needs to be allocated in the cache, one of those 4 lines will need to be evicted.

3.2.7 Data side cache allocation

The L1 data cache is strongly inclusive with respect to the L2 unified cache. Strongly inclusive
means that any cache line present in the L1 data cache will also be present in the L2 unified cache.
However, the L2 cache may also contain cache lines that are not present in the L1 data cache.

3.2.8 Instruction side cache allocation

The L1 instruction cache is strongly inclusive with respect to the L2 unified cache. Strongly
inclusive means that any cache line present in the L1 instruction cache will also be present in the
L2 unified cache. However, the L2 cache may also contain cache lines that are not present in the
L1 instruction cache.

3.2.9 Cache stashing

External I/O requestors can “stash” cache lines into the L2 cache. External requestors can target a
specific CPU and then send the cache line into the L2 via the CHI bus interface in the DSU.

3.2.10 Cache terminology and behavior

A data cache line is considered “clean” if it has not been modified after being loaded into the cache
and is considered “dirty” if the data in the cache line has been changed. If a cache is full, and a new
cache line needs to allocate, then an existing cache line will be evicted – the term used in PMU
events is “refill”.

3.2.11 Cache Maintenance Operations

The Arm® Architecture Reference Manual defines a series of instructions for Cache Maintenance
Operations (CMOs). Examples of those operations include forcing a data writeback to external
memory, and invalidating (emptying) cache lines. In some cases, cache behavior based on those
operations is not counted by PMU events. Where behavior affected by CMOs applies to cache
related PMU events, it is specifically mentioned in the PMU event description. Please note that
there are no cache maintenance operations that can force cache allocation; this applies to all PMU
events relating to cache refill.

3.2.12 Cache coherency

The Neoverse N2 cache logic and the cache coherent interconnect automatically maintain
coherency among any caches for any memory marked as normal, cacheable, and inner sharable.

For an overview about memory types, please consult the Learn The Architecture Guides on the
https://developer.arm.com website.

https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 92

Cache coherency operates by:

• “Snooping” across different caches in the system in case a memory access misses in the local
CPU cache.

• Invalidating other copies of cached data in case one CPU writes to an existing cache line.

Please note that on the Neoverse N2, I-caches can be configured as coherent. I-cache coherency
works by keeping the I-cache strongly inclusive with the unified L2 cache. If the CPU updates
code/instructions (for example, through some sort of just-in-time compiler) that would cause a data
write with the new instructions. That write would behave like any coherent data write and
invalidate copies of that data in any other caches in the system. That invalidation would
automatically invalidate copies of that cache line present in any instruction caches, so new
instruction fetches would have to snoop for the updated (correct) copy.

Note that instruction fetches that miss in the I-cache will look in the D-cache and the L2 cache
first.

The CTR_EL0.DIC bit will be set to 1 if the I-cache is coherent.

3.2.13 L2 cache and memory interface

The external interface on an Neoverse N2 CPU is sometimes referred to as the L2 memory
system, L2 interface, or load/store unit. It provides an interface between the CPU and the CHI bus
interface in the DSU. The Neoverse N2 has no direct interface to the interconnect and external
memory system, so every memory access passes from the Neoverse N2 to the DSU’s CHI bus
interface.

That should not be confused with the load/store portions of the Neoverse N2 pipeline. The
load/store portions of the pipeline process memory operations and then issues memory commands
to the L2 memory system. The L2 memory system issues the actual transactions to the CHI
interface. Figure 2 above illustrates the memory interfaces and caches for a Neoverse N2 system.

3.2.14 Cache lookup

Each cacheable memory access (after translation by the memory management unit) attempts to
look up in the L1 cache (the D-cache for data loads or stores, or the I-cache for instruction
fetches). If that cache line is not present in the L1 cache, then the Neoverse N2 will attempt to
look up in the L2 unified cache. If the cache line is present in the L2 unified cache, it will allocate
(PMU event descriptions use the term “refill”) in the L1 cache. Allocation can also potentially evict
an already existing cache line.

If the lookup misses in the L2 cache, then the Neoverse N2 L2 memory system attempts to look
up in the next level of cache. That next level can either be an L2 cache in a different Neoverse N2,
or the system level cache in the Coherent Mesh Network (or CMN). PMU events that reference
accesses to the next level cache describe how the CPU determines what that next level is.

3.2.15 Cache eviction

When a cache set is full and a new line needs to be allocated into the cache, there is a victim
counter that selects which cache line is next to be evicted. As discussed in Section 3.6, Cache line

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 92

sizes, the term “full” in the relevant PMU event descriptions refers to the particular cache set
where an address can be allocated.

3.2.16 Unaligned accesses

The Neoverse N2 may execute a data memory operation on an unaligned address. The actual
external memory transaction issued by the CPU unit to the bus will be aligned. The CPU will
execute a series of aligned accesses to bring the requested (unaligned address) data in and pass it
back to the load/store pipeline.

For example, if the Neoverse N2 executed a load instruction for a 32-bit word at address 0x8001,
it could issue a 64-bit read from address 0x8000, and then pull the requested 32-bit word from
that full read.

3.2.17 Memory Management Unit behavior

All memory accesses will first go through the Memory Management Unit (MMU) for virtual to
physical address translation, as well as to assign memory attributes to the memory transaction.
Memory translation is defined with a series of memory page translation tables that live in actual
memory and are programmed by the application. Note that the MMU can issue memory
transactions itself when accessing page tables.

Figure 3:

3.2.18 TLB behavior

Existing memory translations are cached in Translation Look-aside Buffers (TLBs). TLBs function as
small caches for memory translations and work similarly to normal data caches (for example, with
behaviors like hits, misses, allocation/refills).

The Neoverse N2 has two levels of TLBs:

• 48 entry L1 I-side and 40 entry D-side TLBs (each fully associative).

• 2048 entry L2 unified TLB (4-way set-associative).

Operations that access memory cause the CPU MMU to look up the virtual to physical translation
in one of the L1 TLBs (depending on whether it is an instruction fetch or a data side read or write).

N2 Load /
Store Unit

MMU

Page
Table
Walk
Unit

Caches

L1I TLB

L1D TLB

L2
 T

LB

Translation
Tables

N2 Fetch
Unit

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 92

If the attempted L1 access misses, the MMU will look up in the L2 TLB. If the attempted L2 access
misses, then the MMU will do a page table walk.

Misses will allocate a new entry in the L2 TLB, which will then forward to the L1 TLB (which will
also allocate a new entry). The L2 TLB also functions as a walk cache which stores partial page
table walk entries. For example, a 2nd stage translation that can be used by multiple 1st stage
translations can allocate into the L2 TLB.

3.2.19 TLB maintenance operations

The Arm® Architecture Reference Manual defines a series of instructions for TLB maintenance.
These operations are used to invalidate TLB entries when the associated MMU mapping has
changed. In some cases, TLB behavior based on those operations is not counted by PMU events.
Where behavior that can be caused by TLB maintenance operations applies to TLB related PMU
events, it is specifically mentioned in the PMU event description.

Please note that there are no TLB maintenance operations that can force TLB allocation.

3.2.20 Memory error behavior

The Neoverse N2 implements parity or some form of Error Correction Code (ECC) for some internal
memory structures. Behavior, control, and reporting registers are part of the Reliability, Availability,
and Serviceability (RAS) Architectural Extension.

Accesses to those memories will check the error status and respond in the following ways:

• The L1 instruction cache is protected by parity checking. If an error is detected, then the
internal RAS counters are updated. The cache line is then invalidated so that the correct cache
line can be fetched.

• The L1 data cache and L2 unified cache are protected with ECC. If a 1-bit error is detected, it
is corrected, and internal counters are updated.

• If a 2-bit (uncorrectable) error is detected, and the memory access has been architecturally
executed, that error is considered “consumed”. The CPU will take a synchronous error
exception or an SError exception and update internal memory error registers.

• If a 2-bit (uncorrectable) error is detected, and the memory access has been speculatively
executed but not architecturally committed, the CPU will mark the cache line as “poisoned”.
Poisoning defers the error response until some other device in the system consumes that error.
If a CPU that consumes the poisoned cache line, then it will take a synchronous error
exception or an SError exception and update internal memory error registers.

On the Neoverse N2, a speculatively executed instruction or memory access cannot directly cause
an exception until that instruction or access is architecturally committed.

For RAS/Memory error related PMU events, RAS register counts are separate from any related
PMU event that counts memory errors.

Also, the MEMORY_ERROR PMU event does not count L2 cache memory errors.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 92

3.2.21 Coherent Mesh Network configuration

The Neoverse N2 connects to a memory interconnect based on the AMBA Coherent Hub
Interconnect (CHI) protocol. Arm’s implementations of that protocol are the Coherent Mesh Network
(CMN) products. Depending on the version or topology, large numbers of Neoverse N2 CPUs can
be connected to CMN.

CMN has a built-in System Level Cache (SLC), which functions as a next level cache for all
connected CPUs. The SLC allocates based on eviction from the L2 cache of a connected Neoverse
N2 CPU in direct connect mode.

It is also possible to “stash” cache lines into the SLC from external I/O requestors.

It is possible to connect multiple implementations of an Neoverse N2/CMN system (known as a
“mesh”) connected across a coherent network link. Each mesh is sometimes be referred to as
another “chip” in Arm product documentation. “Socket” is another industry term that is sometimes
used, but Arm generally uses the word chip for multiple coherent mesh implementations.

CMN products contain their own set of PMU counters and events. Those counters and events are
described in the CMN technical documentation for the CMN version that is being used.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 92

4 PMU event descriptions
PMU events are described in both the Arm® Architecture Reference Manual and the Arm®
Neoverse™ N2 Core Technical Reference Manual. The descriptions in this document provide a more
specific and practical description of the event functionality with relation to the Neoverse N2
microarchitecture.

In addition, the Arm® Architecture Reference Manual has a section describing meaningful
combinations of common PMU events. Those descriptions can be used to measure metrics such as
cache hit rates or instruction performance.

There is also a JSON format list of the PMU events (with descriptions taken from the Arm®
Neoverse™ N2 Core Revision: Technical Reference Manual) here:

https://github.com/ARM-software/data/blob/master/pmu/neoverse-n2.json

Note: There are some events related to debug and SPE that are listed in the Arm® Neoverse™ N2
Technical Reference Manual but not described in this guide. For more information about those
events, please look at their description in the Arm® Architecture Reference Manual ,the Arm®
Neoverse™N2 Technical Reference Manual, or in the related debug documentation.

4.1 TLB and MMU related events
This section describes the following events:

• 0x02, L1I_TLB_REFILL, L1 instruction TLB refill

• 0x05, L1D_TLB_REFILL, L1, data TLB refill

• 0x1C, TTBR_WRITE_RETIRED, TTBR write architecturally executed

• 0x25, L1D_TLB, Level 1 data TLB access

• 0x26, L1I_TLB, Level 1 instruction TLB access

• 0x2D, L2D_TLB_REFILL, Attributable L2 unified TLB refill

• 0x2F, L2D_TLB, Attributable L2 unified TLB access

• 0x34, DTLB_WALK, Access to data TLB that caused a page table walk

• 0x35, ITLB_WALK, Access to instruction TLB that caused a page table walk

• 0x4C, L1D_TLB_REFILL_RD, L1 data TLB refill, read

• 0x4D, L1D_TLB_REFILL_WR, L1 data TLB refill, write

• 0x4E, L1D_TLB_RD, L1 data TLB access, read

• 0x4F, L1D_TLB_WR, L1 data TLB access, write

• 0x5C, L2D_TLB_REFILL_RD, L2 unified TLB refill, read

• 0x5D, L2D_TLB_REFILL_WR, L2 unified TLB refill, write

• 0x5E, L2D_TLB_RD, L2 unified TLB access, read

https://github.com/ARM-software/data/blob/master/pmu/neoverse-n2.json

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 92

• 0x5F, L2D_TLB_WR L2 unified TLB access, write

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Attributability

• Speculatively executed versus architecturally executed

• MMU behavior

• TLB behavior

• TLB maintenance operations

4.1.1 0x02, L1I_TLB_REFILL, L1 instruction TLB refill

This event counts L1 I-side TLB refills from any I-side memory access. If there are multiple misses
in the TLB that are resolved by the refill, then this event will only count once.

This event will not count if the page table walk results in a fault (such as a translation or access
fault), since there is no new translation created for the TLB.

4.1.2 0x05, L1D_TLB_REFILL, L1 data TLB refill

This event counts L1 D-side TLB refills from any D-side memory access. If there are multiple
misses in the TLB that are resolved by the refill, then this event will only count once. This event
counts for refills caused by preload instructions or hardware prefetch accesses.

This event will count regardless of whether the miss hits in L2 or results in a page table walk.

This event will not count if the page table walk results in a fault (such as a translation or access
fault), since there is no new translation created for the TLB.

This event will not count with an access from an Address Translation (AT) instruction.

This event is the sum of the L1D_TLB_REFILL_RD and L1D_TLB_REFILL_WR events.

4.1.3 0x1C, TTBR_WRITE_RETIRED, TTBR write architecturally executed

This event counts architectural writes to TTBR0/1_EL1. If virtualization host extensions are
enabled by setting the HCR_EL2.E2H bit to 1, then accesses to TTBR0/1_EL1 that are redirected
to TTBR0/1_EL2, or accesses to TTBR0/1_EL12 are counted. TTBRn registers are typically
updated when the kernel is swapping userspace threads or applications.

4.1.4 0x25, L1D_TLB, Level 1 data TLB access

This event counts any L1 D-side TLB access caused by any memory load or store operation. Note
that load or store instructions can be broken up into multiple memory operations.

This event does not count TLB maintenance operations.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 92

This event is the sum of the L1D_TLB_RD and L1D_TLB_WR events.

4.1.5 0x26, L1I_TLB, Level 1 instruction TLB access

This event counts any L1 I-side TLB access whether the access hits or misses in the TLB.

This event is a superset of the L1I_TLB_REFILL event.

4.1.6 0x2D, L2D_TLB_REFILL, Attributable L2 unified TLB refill

This event counts any allocation into the L2 TLB from either an I-side or D-side access.

In the Neoverse N2 Technical Reference Manual this event is referred to as the L2TLB_REFILL event.

This event is the sum of the L2D_TLB_REFILL_RD and L2D_TLB_REFILL_WR events.

4.1.7 0x2F, L2D_TLB, Attributable L2 unified TLB access

This event counts any access into the L2 TLB except those caused by TLB maintenance
operations.

In the Neoverse N2 Technical Reference Manual this event is referred to as the L2TLB_REQ event.

This event is the sum of the L2D_TLB_RD and L2D_TLB_WR events.

4.1.8 0x34, DTLB_WALK, Access to data TLB that caused a translation (or
page) table walk

This event counts any page table walk (caused by a miss in the L1 D-side and L2 TLB) driven by a
D-side memory access. Note that partial translations that also cause a page walk are counted.

This event does not count walks caused by TLB maintenance operations.

4.1.9 0x35, ITLB_WALK, Access to instruction TLB that caused a page table
walk

This event counts any page table walk (caused by a miss in the L1 I-side and L2 TLB) driven by a I-
side memory access. Note that partial translations that also cause a page walk are counted.

This event does not count walks for accessing translations that are used for accessing page table
descriptors since those are D-side, even if started by an I-side access.

This event does not count walks caused by TLB maintenance operations.

4.1.10 0x4C, L1D_TLB_REFILL_RD, L1 data TLB refill, read

This event counts L1 D-side TLB refills caused by a data side memory read operation. If there are
multiple misses in the TLB that are resolved by the refill, then this event will only count once. This
event counts for refills caused by preload instructions or hardware prefetch accesses.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 92

This event will count regardless of whether the miss hits in L2 or results in a page table walk.

This event will not count if the page table walk results in a fault (such as a translation or access
fault), since there is no new translation created for the TLB.

This event will not count with an access from an Address Translation (AT) instruction.

This event is a subset of the L1D_TLB_REFILL event.

4.1.11 0x4D, L1D_TLB_REFILL_WR, L1 data TLB refill, write

This event counts L1 D-side L1 TLB refills caused by a D-side memory write operation. If there are
multiple misses in the TLB that are resolved by the refill, then this event will only count once. This
event counts for refills caused by preload instructions or hardware prefetch accesses.

This event will count regardless of whether the miss hits in L2 or results in a page table walk.

This event will not count if the page table walk results in a fault (such as a translation or access
fault), since there is no new translation created for the TLB.

This event will not count with an access from an Address Translation (AT) instruction.

This event is a subset of the L1D_TLB_REFILL event.

4.1.12 0x4E, L1D_TLB_RD, L1 data TLB access, read

This event counts any L1 D-side TLB access caused by a memory read operation. This event
counts whether the access hits or misses in the TLB.

This event does not count TLB maintenance operations.

This event is a subset of the L1D_TLB event.

4.1.13 0x4F, L1D_TLB_WR, L1 data TLB access, write

This event counts any L1 D-side TLB access caused by a memory write operation. This event
counts whether the access hits or misses in the TLB.

This event does not count TLB maintenance operations.

This event is a subset of the L1D_TLB event.

4.1.14 0x5C, L2D_TLB_REFILL_RD, L2 unified TLB refill, read

This event counts any allocation into the L2 TLB caused by an I-side or D-side memory read
operation.

In the Neoverse N2 Technical Reference Manual this event is referred to as the L2TLB_RD_REFILL
event.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 92

This event is a subset of the L2D_TLB_REFILL event.

4.1.15 0x5D, L2D_TLB_REFILL_WR, L2 unified TLB refill, write

This event counts any allocation into the L2 TLB caused by a D-side memory write operation.

In the Neoverse N2 Technical Reference Manual, this event is referred to as the L2TLB_WR_REFILL
event.

This event is a subset of the L2D_TLB_REFILL event.

4.1.16 0x5E, L2D_TLB_RD, L2 unified TLB access, read

This event counts any access into the L2 TLB caused by a an I-side or D-side memory read
operation except for those caused by TLB maintenance operations.

In the Neoverse N2 Technical Reference Manual, this event is referred to as the L2TLB_RD_REQ
event.

This event is a subset of the L2D_TLB event.

4.1.17 0x5F, L2D_TLB_WR, L2 unified TLB access, write

This event counts any access into the L2 TLB caused by a D-side memory write operation except
for those caused by TLB maintenance operations.

In the Neoverse N2 Technical Reference Manual, this event is referred to as the L2TLB_WR_REQ
event.

This event is a subset of the L2D_TLB event.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 92

4.2 L1 data cache related events
This section describes the following events:

• 0x03, L1D_CACHE_REFILL, L1 data cache refill

• 0x04, L1D_CACHE, L1 data cache access

• 0x15, L1D_CACHE_WB, L1 data cache write-back

• 0x39, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency miss

• 0x40, L1D_CACHE_RD, L1 data cache access, read

• 0x41, L1D_CACHE_WR, L1 data cache access, write

• 0x42, L1D_CACHE_REFILL_RD, L1 data cache refill, read

• 0x43, L1D_CACHE_REFILL_WR, L1 data cache refill, write

• 0x44, L1D_CACHE_REFILL_INNER, L1 data cache refill, inner

• 0x45, L1D_CACHE_REFILL_OUTER, L1 data cache refill, outer

• 0x46, L1D_CACHE_WB_VICTIM, L1 data cache write-back, victim

• 0x47, L1D_CACHE_WB_CLEAN, L1 data cache write-back cleaning and coherency

• 0x48, L1D_CACHE_INVAL, L1 data cache invalidate

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Out of order execution

• Cache architecture

• Cache line sizes

• Data side cache allocation

• Cache terminology and behavior

• Cache maintenance operations

• Cache coherency

• Cache lookup

• Cache eviction

4.2.1 0x03, L1D_CACHE_REFILL, L1 data cache refill

This event counts L1 D-cache line allocations caused by speculatively executed load or store
instructions where the memory operation misses in the L1 D-cache.

This event does not count cache line allocations from preload instructions or from hardware cache
prefetching.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 92

This event only counts one event per cache line. If two operations accessing the same cache line
occur, and the second operation has to wait on the fetch of the rest of the cache line, only one
event is counted. For example, if a program executes a read from address 0x800C, and then
executes a read from address 0x8000, the second read will not count. If a memory read operation
accesses across two cache lines, this event will count twice (once for each cache line).

This event counts the sum of the L1D_CACHE_REFILL_RD and L1D_CACHE_REFILL_WR events.

Since Neoverse N2 caches are write-back only, there are no write-through cache accesses.

4.2.2 0x04, L1D_CACHE, L1 data cache access

This event counts D-cache accesses from any load/store operation that accesses the L1 D-cache.

Please be aware that atomic operations that resolve in the CPU’s caches (“near” atomic operations)
will count as both a write access and read access.

This event counts the sum of L1D_CACHE_RD and L1D_CACHE_WR.

4.2.3 0x15, L1D_CACHE_WB, L1 data cache write-back

This event counts any write-back of dirty data from the L1 data cache to the L2 cache. This occurs
when either:

• A dirty cache line is evicted from L1 D-cache and allocated in the L2 cache.

• Dirty data is written to the L2 and possibly to the next level of cache.

This event counts both victim cache line evictions and cache write backs from snoops or cache
maintenance operations. The following cache operations are not counted:

• Invalidations which do not result in data being transferred out of the L1, such as evictions of
clean data).

• Full line writes which write to L2 without writing L1, such as write streaming mode.

This event is the sum of the L1D_CACHE_WB_CLEAN and L1D_CACHE_WB_VICTIM events.

4.2.4 0x39, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency miss

This event counts the same as the L1D_CACHE_REFILL_RD event.

4.2.5 0x40, L1D_CACHE_RD, L1 data cache access, read

This event counts any load operation which looks up in the L1 data cache, regardless of whether
the access hits in the cache.

This event does not count reads caused by cache maintenance operations or prefetch operations.

This event is a subset of the L1D_CACHE event, except this event only counts memory read
operations.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 92

Please be aware that atomic operations that resolve in the CPU’s caches (“near” atomic operations)
will count as a write access and read access.

4.2.6 0x41, L1D_CACHE_WR, L1 data cache access, write

This event counts any store operation which looks up in the L1 data cache. This event also counts
accesses caused by a Data Cache Zero by Virtual Address (DC ZVA) instruction.

This event is a subset of the L1D_CACHE event, except this event only counts memory-write
operations.

Please be aware that atomic operations that resolve in the CPU’s caches (“near” atomic operations)
will count as a write access and read access.

4.2.7 0x42, L1D_CACHE_REFILL_RD, L1 data cache refill, read

This event counts L1 D-cache line allocations caused by speculatively executed load instructions
where the memory read operation misses in the L1 D-cache.

This event is a subset of the L1D_CACHE_REFILL event, but this event only counts memory read
operations.

This event does not count reads caused by cache maintenance operations or preload instructions.

4.2.8 0x43, L1D_CACHE_REFILL_WR, L1 data cache refill, write

This event counts L1 D-cache line allocations caused by speculatively executed store instructions
where the memory write operation misses in the L1 D-cache.

This event is a subset of the L1D_CACHE_REFILL event, but this event only counts memory write
operations.

4.2.9 0x44, L1D_CACHE_REFILL_INNER, L1 data cache refill, inner

This event counts any L1 D-cache allocation (as counted by the L1D_CACHE_REFILL event) where
the cache line data came from a hit in the L2 cache.

4.2.10 0x45, L1D_CACHE_REFILL_OUTER, L1 data cache refill, outer

This event counts any cache line allocation into the L1 D-cache (as counted by the
L1D_CACHE_REFILL event) which obtains data from outside the cluster. It does not count when
the data comes from the L2 cache.

For Neoverse N2 CPU versions prior to r0p1, erratum 2280397 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 92

4.2.11 0x46, L1D_CACHE_WB_VICTIM, L1 data cache write-back, victim

This event counts dirty cache line evictions from the L1 data cache because of a new cache line
being allocated.

This event is a subset of the L1D_CACHE_WB event, but the event only counts write-backs that
are a result of the line being allocated for an access made by the CPU.

This event does not count evictions caused by cache maintenance operations.

4.2.12 0x47, L1D_CACHE_WB_CLEAN, L1 data cache write-back cleaning
and coherency

This event counts write-backs from the L1 data cache that are a result of a coherency operation
(including cache maintenance operations) made by another CPU.

This event is a subset of the L1D_CACHE_WB event.

4.2.13 0x48, L1D_CACHE_INVAL, L1 data cache invalidate

This event counts each explicit invalidation of a cache line in the Level 1 data cache caused by:

• Cache Maintenance Operations (CMO) that operate by a virtual address.

• Broadcast cache coherency operations from another CPU in the system.

This event does not count for the following conditions:

• A cache refill invalidates a cache line.

• A CMO which is executed on that CPU and invalidates a cache line specified by set/way. Note
that CMOs that operate by set/way cannot be broadcast from one CPU to another.

For Neoverse N2 CPU versions prior to r0p1, erratum 2139205 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 92

4.3 L1 instruction cache related events
This section describes the following events:

• 0x01, L1I_CACHE_REFILL, L1 instruction cache refill

• 0x14, L1I_CACHE, Level 1 instruction cache access

• 0x4006, L1I_CACHE_LMISS L1 instruction cache long latency miss

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Cache architecture

• Cache line sizes

• Instruction side cache allocation

• Cache terminology and behavior

• Cache maintenance operations

• Cache lookup

• Cache eviction

4.3.1 0x01, L1I_CACHE_REFILL, L1 instruction cache refill

This event counts any cache line allocation in the L1 I-cache. Allocations are caused by an
instruction fetch which misses in the L1 I-cache. Instruction fetches may include accessing multiple
instructions, but the single cache line allocation is counted once.

4.3.2 0x14, L1I_CACHE, Level 1 instruction cache access

This event counts any instruction fetch which accesses the L1 instruction cache. A single
instruction fetch can access multiple instructions.

Instruction cache accesses caused by cache maintenance operations are not counted.

4.3.3 0x4006 L1I_CACHE_LMISS L1 instruction cache long latency miss

This event counts the same as the L1I_CACHE_REFILL event.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 92

4.4 L2 cache related events
This section describes the following events:

• 0x16, L2D_CACHE, L2 data cache access

• 0x17, L2D_CACHE_REFILL, L2 cache refill

• 0x18, L2D_CACHE_WB, L2 cache write-back

• 0x20, L2D_CACHE_ALLOCATE, L2 cache allocation without refill

• 0x50, L2D_CACHE_RD, L2 cache access, read

• 0x51, L2D_CACHE_WR, L2 cache access, write

• 0x52, L2D_CACHE_REFILL_RD, L2 cache refill, read

• 0x53, L2D_CACHE_REFILL_WR, L2 cache refill, write

• 0x56, L2D_CACHE_WB_VICTIM, L2 cache write-back, victim

• 0x57, L2D_CACHE_WB_CLEAN, L2 cache write-back, cleaning and coherency

• 0x58, L2D_CACHE_INVAL, L2 cache invalidate

• 0x108, L2D_CACHE_REFILL_INST, L2 cache refill, fetch

• 0x4009 L2D_CACHE_LMISS_RD L2 cache long latency miss

Please note that while L2 cache PMU events are listed as “L2D_<event name>”, the Neoverse N2
L2 cache is a unified cache. It contains both instruction and data cache lines.

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• CPU and DSU configuration

• Cache architecture

• Cache line sizes

• Data side cache allocation

• Instruction side cache allocation

• Cache terminology and behavior

• Cache maintenance operations

• Cache coherency

• L2 cache and memory interface interaction

• Cache lookup

• Cache eviction

4.4.1 0x16, L2D_CACHE, L2 cache access

This event counts any memory access issued by the CPU to the L2 cache. Accesses are either:

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 92

• L1 I-cache miss that looks up in the L2 cache.

• L1 D-cache miss that looks up into the L2 cache.

• L1 D-cache writeback of dirty data into the L2 cache.

This event counts whether the access hits or misses in the L2 cache.

This event is the sum of the L2D_CACHE_RD and L2D_CACHE_WR events.

4.4.2 0x17, L2D_CACHE_REFILL, L2 cache refill

This event counts any cache line allocation into the L2 cache.

This event is a superset of the L2D_CACHE_REFILL_RD event.

4.4.3 0x18, L2D_CACHE_WB, L2 cache write-back

This event counts any write-back of data from the L2 cache to outside the CPU. This includes
snoops to the L2 (from other CPUs) which return data even if the snoops cause an invalidation.

L2 cache line invalidations which do not write data outside the CPU and snoops which return data
from an L1 cache are not counted. Data would not be written outside the cache when invalidating
a clean cache line.

This event is the sum of the L2D_CACHE_WB_VICTIM and L2D_CACHE_WB_CLEAN events.

4.4.4 0x20, L2D_CACHE_ALLOCATE, L2 cache allocation without refill

This event does not count on the Neoverse N2.

4.4.5 0x50, L2D_CACHE_RD, L2 cache access, read

This event counts any read operation issued by the CPU which looks up in the unified L2 cache.
This event counts whether the access hits or misses in the L2 cache. Snoops from outside the CPU
are not counted.

This event is a subset of the L2D_CACHE event, but this event only counts access caused by
memory read operations.

4.4.6 0x51, L2D_CACHE_WR, L2 cache access, write

This event counts any memory write operation issued by the CPU which looks up in the unified L2
cache. This event counts whether the access hits or misses in the L2 cache. This event also counts
any write-back from the L1 data cache that allocates into the L2 cache. This event treats Data
Cache Zero by Virtual Address (DC ZVA) operations as a store instruction and counts those
accesses. Snoops from outside the CPU are not counted.

This event is a subset of the L2D_CACHE event but only counts memory write operations.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 92

4.4.7 0x52, L2D_CACHE_REFILL_RD, L2 cache refill, read

This event counts any cacheable read operation issued by the CPU which causes data to be read
from outside the CPU. Store instructions that miss inside the L2 cache will cause this event to
count since the cache line is read and allocated into the L2 cache.

This event is a subset of the L2D_CACHE_REFILL event.

This event does not count L2 refills caused by stashes into L2.

4.4.8 0x53, L2D_CACHE_REFILL_WR, L2 cache refill, write

This event does not count on the Neoverse N2.

4.4.9 0x56, L2D_CACHE_WB_VICTIM, L2 cache write-back, victim

This event counts evictions from the L2 cache because of a line being allocated into the L2 cache.

This event does not count evictions caused by cache maintenance operations.

This event is a subset of the L2D_CACHE_WB event.

4.4.10 0x57, L2D_CACHE_WB_CLEAN, L2 cache write-back, cleaning and
coherency

This event counts write-backs from the L2 cache that are a result of either:

• Cache maintenance operations.

• Snoop responses.

• Direct cache transfers to another CPU due to a forwarding snoop request.

For all Neoverse N2 CPU versions, including r0p3, erratum 2933583 could affect this PMU event.
For more information about this erratum, please see the Arm Neoverse N2 (MP128) Software
Developer Errata Notice, available on https://developer.arm.com/.

This event is a subset of the L2D_CACHE_WB event.

4.4.11 0x58, L2D_CACHE_INVAL, L2 cache invalidate

This event counts each explicit invalidation of a cache line in the Level 2 cache by cache
maintenance operations that operate by a virtual address, or by external coherency operations.

This event does not count if either:

• A cache refill invalidates a cache line.

• A Cache Maintenance Operation (CMO), which invalidates a cache line specified by set/way is
executed on that CPU. CMOs that operate by set/way cannot be broadcast from one CPU to
another.

https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 92

For Neoverse N2 CPU versions prior to r0p1, erratum 2139205 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

4.4.12 0x108, L2D_CACHE_REFILL_INST, L2 cache refill, fetch

This event counts any cache line allocation in the L2 unified cache where that allocation is caused
by an instruction fetch which misses in the L1 I-cache and the L2 unified cache. Instruction fetches
may include accessing multiple instructions, but the single cache line allocation is counted once.

This event is a subset of the L2D_CACHE_REFILL and L2D_CACHE_REFILL_RD events.

Please note that this event is an implementation defined event, and is not defined in the Arm®
Architecture Reference Manual.

4.4.13 0x4009 L2D_CACHE_LMISS_RD L2 cache long latency miss

This event counts the same as the L2D_CACHE_REFILL_RD event.

https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 92

4.5 L3 cache/external system cache related events
This section describes the following events:

• 0x29, L3D_CACHE_ALLOCATE, Attributable Level 3 data cache allocation without refill

• 0x2A, L3D_CACHE_REFILL, Attributable Level 3 unified cache refill

• 0x2B, L3D_CACHE, Attributable Level 3 unified cache access

• 0x36, LL_CACHE_RD, Last level cache access, read

• 0x37, LL_CACHE_MISS_RD, Last level cache miss, read

• 0xA0, L3_CACHE_RD, L3 cache read

• 0x400B L3D_CACHE_LMISS_RD L3 cache long latency miss

Some of these events can be affected by the system register CPUECTLR.EXTLLC bit.
CPUECTLR.EXTLLC is described in the Arm® Neoverse™ N2 Technical Reference Manual and
indicates that there is a last level cache which is external to the CPU in the system. The
CPUECTLR.EXTLLC bit is set by system software in most system configurations.

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Attributability

• CPU and DSU configuration

• Cache architecture

• Cache line sizes

• Cache terminology and behavior

• Cache maintenance operations

• Cache coherency

• L2 cache and memory interface interaction

• Cache lookup

• Cache eviction

• CMN configuration

4.5.1 0x29, L3D_CACHE_ALLOCATE, Attributable Level 3 data cache
allocation without refill

This event does not count on the Neoverse N2.

For Neoverse N2 CPU versions prior to r0p1, erratum 2067962 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 92

4.5.2 0x2A, L3D_CACHE_REFILL, Attributable Level 3 unified cache refill

This event does not count on the Neoverse N2.

4.5.3 0x2B, L3D_CACHE, Attributable Level 3 unified cache access

This event does not count on the Neoverse N2.

4.5.4 0x36, LL_CACHE_RD, Last level cache access, read
This event does not count when the system register CPUECTLR.EXTLLC bit is not set.

This event counts read transactions returned from outside the Neoverse N2 when the system
register CPUECTLR.EXTLLC bit is set.

This event counts any cacheable read bus transaction that returns a data source of:

• System level cache in the coherent interconnect such as in the CMN

• Caches in a CPU in another cluster

• External system memory (DRAM)

• Remote device

The data source of the transaction is indicated by a field in the CHI transaction returning to the
CPU.

This event does not count reads caused by cache maintenance operations.

Please note that a bus read transaction (which would be counted by this event) could be caused by
a store instruction which misses in the L1 D-cache. The Neoverse N2 caches allocate for load and
store operations, which would require the cache line containing that memory to be read into the
CPU.

This event is a superset of the LL_CACHE_MISS_RD event, since it counts hits in the CMN System
Level Cache SLC along with data returned from other external sources.

4.5.5 0x37, LL_CACHE_MISS_RD, Last level cache miss, read
This event does not count when the system register CPUECTLR.EXTLLC bit is not set.

When the system register CPUECTLR.EXTLLC bit is set, then the following applies:

This event counts read transactions returned from outside the Neoverse N2 if the transactions are
not returned from the CMN System Level Cache (SLC).

This event counts any cacheable read bus transaction that returns a data source of:

• Caches in a CPU in another cluster

• External system memory (DRAM)

• Remote device

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 92

The data source of the transaction is indicated by a field in the CHI transaction returning to the
CPU.

This event does not count reads caused by cache maintenance operations.

Please note that a bus read transaction could be caused by a store operation in the CPU. The
Neoverse N2 caches allocate for load and store operations, which would require the cache line
containing that memory to be read into the CPU.

This event is a subset of the LL_CACHE_RD event, since it does not count hits in the System Level
Cache (SLC) along with data returned from other external sources.

4.5.6 0xA0, L3_CACHE_RD, L3 cache read

This event does not count on the Neoverse N2.

4.5.7 0x400B L3D_CACHE_LMISS_RD L3 cache long latency miss

This event does not count on the Neoverse N2.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 92

4.6 Memory system related events
This section describes the following events:

• 0x13, MEM_ACCESS, Data memory access

• 0x19, BUS_ACCESS, Bus access

• 0x1A, MEMORY_ERROR, Local memory error

• 0x31, REMOTE_ACCESS, Access to another socket in a multi-socket system

• 0x60, BUS_ACCESS_RD, Bus access read

• 0x61, BUS_ACCESS_WR, Bus access write

• 0x66, MEM_ACCESS_RD, Data memory access, read

• 0x67, MEM_ACCESS_WR, Data memory access, write

• 0x4020 LDST_ALIGN_LAT Access with additional latency from alignment

• 0x4021 LD_ALIGN_LAT Load with additional latency from alignment

• 0x4022 ST_ALIGN_LAT Store with additional latency from alignment

• 0x4024 MEM_ACCESS_CHECKED Checked data memory access

• 0x4025 MEM_ACCESS_RD_CHECKED Checked data memory access, read

• 0x4026 MEM_ACCESS_WR_CHECKED Checked data memory access, write

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Attributability

• Speculatively executed versus architecturally executed

• Aligned/Unaligned memory accesses

• CPU and DSU configuration

• Out of order execution

• Cache architecture

• Cache line sizes

• Cache terminology and behavior

• Cache maintenance operations

• Cache coherency

• L2 cache and memory interface interaction

• Cache lookup

• Cache eviction

• CMN configuration

• Memory Transaction Extension (MTE)

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 92

4.6.1 0x13, MEM_ACCESS, Data memory access

This event counts memory accesses issued by the CPU load store unit, where those accesses are
issued due to load or store operations. This event also counts any memory access, no matter
whether the data is located in any level of cache or external memory.

If memory accesses are broken up into smaller transactions than what were specified in the load or
store instructions, then the event counts those smaller memory transactions. Memory accesses
generated by the following instructions or activity are not counted:

• Instruction fetches

• Cache maintenance instructions

• Translation table walks or prefetches

• Memory prefetch operations

This event counts the sum of the MEM_ACCESS_RD and MEM_ACCESS_WR events.

4.6.2 0x19, BUS_ACCESS, Bus access

This event counts any memory accesses issued by the load/store memory system (also referred to
as the L2 system) from the CPU to the DSU. Since the DSU is always implemented with the direct
connect configuration, the transaction will go to the system interconnect (bus).

This event counts both D-side and I-side accesses. Each actual bus transaction issued is counted,
including snoop requests and snoop responses. If memory accesses are broken up into smaller
transactions than what were specified in the load or store instructions, then the event counts
those smaller memory transactions.

This event can increment a maximum of 2 counts per cycle.

The current version of the Arm® Architecture Reference Manual implements additional fields in the
Performance Monitors Machine Identification Register, PMMIR_EL1, that were not defined when
the Neoverse N2 was developed. Those fields could be useful for understanding memory system
related events, and are defined as follows:

• PMMIR_EL1.BUS_SLOTS: 2

• PMMIR_EL1.BUS_WIDTH: 256

This event is the sum of the BUS_ACCESS_RD and BUS_ACCESS_WR events.

4.6.3 0x1A, MEMORY_ERROR, Local memory error

This event counts any detected correctable or uncorrectable physical memory error (ECC or parity)
in protected CPUs RAMs. On the Neoverse N2, this event counts errors in the caches (including
data and tag rams). Any detected memory error (from either a speculative and abandoned access,
or an architecturally executed access) is counted.

Be aware that memory errors are only detected when the actual protected memory is accessed by
an operation.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 92

4.6.4 0x31, REMOTE_ACCESS, Access to another socket in a multi-socket
system

This event counts accesses to another socket, which is implemented as a different CMN mesh in
the system. If the CHI bus response back to the Neoverse N2 indicates that the data source is
from another chip (mesh), then the counter is updated. If no data is returned, even if the system
snoops another chip/mesh, then the counter is not updated.

4.6.5 0x60, BUS_ACCESS_RD, Bus access read

This event counts any memory read transactions issued by the load store unit in the CPU to the
system interconnect (bus). Note that the transaction will pass through the direct connect DSU.

This event counts explicit read accesses, as well as accesses from cache prefetching. If memory
accesses are broken up into smaller transactions that are issued by the bus interface, then the
event counts those smaller transactions.

This event does not count accesses such as coherent snoops that were issued from outside the
CPU.

4.6.6 0x61, BUS_ACCESS_WR, Bus access write.

This event counts any memory write transactions issued by the load store unit in the CPU to the
system interconnect (bus). Note that the transaction will pass through the (direct connect) DSU.

This event counts explicit accesses and accesses issued by the caches due to cache evictions. If
memory accesses are broken up into smaller transactions that are issued by the bus interface, then
the event counts those smaller transactions.

This event does not count accesses such as coherent snoops that were issued from outside the
CPU.

4.6.7 0x66, MEM_ACCESS_RD, Data memory access, read

This event counts memory accesses issued by the CPU due to load operations. The event counts
any memory load access, no matter whether the data is located in any level of cache or external
memory. The event also counts atomic load operations.

If memory accesses are broken up by the load/store unit into smaller transactions that are issued
by the bus interface, then the event counts those smaller transactions.

The following instructions are not counted:

• Instruction fetches

• Cache maintenance instructions

• Translation table walks or prefetches

• Memory prefetch operations

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 92

This event is a subset of the MEM_ACCESS event but the event only counts memory-read
operations.

4.6.8 0x67, MEM_ACCESS_WR, Data memory access, write

This event counts memory accesses issued by the CPU due to store operations. The event counts
any memory store access, no matter whether the data is located in any level of cache or external
memory. The event also counts atomic load and store operations.

If memory accesses are broken up by the load/store unit into smaller transactions that are issued
by the bus interface, then the event counts those smaller transactions.

The following instructions and operations are not counted:

• Cache maintenance instructions

• Normal cache operations (for example, evictions)

• Barrier operations (DSB, ESB, DMB, SSBB)

• Exclusive Clear (CLREX) instructions

• Address Translation (AT) instructions

• Atomic swap operations

This event is a subset of the MEM_ACCESS event but the event only counts memory-write
operations.

4.6.9 0x4020 LDST_ALIGN_LAT Access with additional latency from
alignment

This event counts memory accesses that are split across two cycles for micro-architectural reasons.

This event is a superset of the LD_ALIGN_LAT and the ST_ALIGN_LAT events.

4.6.10 0x4021 LD_ALIGN_LAT Load with additional latency from
alignment

This event counts memory reads that are split across two cycles for either of the following reasons:

• The read spans across two cache lines.

• The read is a quad word (128-bit) access where the address is not word-aligned.

This event is a subset of the LDST_ALIGN_LAT event.

4.6.11 0x4022 ST_ALIGN_LAT Store with additional latency from
alignment

This event counts memory reads that are split across two cycles because the store is spread across
a memory page boundary.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 92

This event is a subset of the LDST_ALIGN_LAT event.

4.6.12 0x4024 MEM_ACCESS_CHECKED Checked data memory access

This event counts memory accesses that are checked by the Memory Tagging Extension (MTE) and
counts whether the memory tag check passes or fails.

For Neoverse N2 CPU versions prior to r0p1, erratum 2189737 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

This event is a subset of the MEM_ACCESS event.

4.6.13 0x4025 MEM_ACCESS_RD_CHECKED Checked data memory
access, read

This event counts memory read accesses that are checked by the Memory Tagging Extension (MTE)
and counts whether the memory tag check passes or fails.

This event is a subset of the MEM_ACCESS event, the MEM_ACCESS_RD event, and the
MEM_ACCESS_CHECKED event.

4.6.14 0x4026 MEM_ACCESS_WR_CHECKED Checked data memory
access, write

This event counts memory write accesses that are checked by the Memory Tagging Extension (MTE)
and counts whether the memory tag check passes or fails.

For Neoverse N2 CPU versions prior to r0p1, erratum 2189737 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

This event is a subset of the MEM_ACCESS event, the MEM_ACCESS_WR event and the
MEM_ACCESS_CHECKED event.

https://developer.arm.com/
https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 92

4.7 Pipeline related events
This section describes the following events:

• 0x23, STALL_FRONTEND, No operation issued due to the front end

• 0x24, STALL_BACKEND, No operation issued due to the back end

• 0x3C STALL No operation sent for execution

• 0x3D STALL_SLOT_BACKEND No operation sent for execution on a slot due to the back end

• 0x3E STALL_SLOT_FRONTEND No operation sent for execution on a slot due to the front
end

• 0x3F STALL_SLOT No operation sent for execution on a slot

• 0x4005 STALL_BACKEND_MEM No operation sent due to the back end and memory stalls

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Attributability

• Speculatively executed versus architecturally executed

• Pipeline and operations

• Out of order execution

4.7.1 0x23, STALL_FRONTEND, No operation issued due to the front end

This event counts cycles whenever the front end (fetch) stages of the pipeline have no operations
to send to the rename stage (in the decode/rename/dispatch portion) of the pipeline. That
condition would stop those stages from sending operations to be issued to the (back end) execute
stages of the pipeline.

In some cases, this event will also count stalls because of certain pipeline resource problems on the
back end.

4.7.2 0x24, STALL_BACKEND, No operation issued due to the back end

This event counts cycles whenever the decode/rename/dispatch stage is unable to send
operations to be issued to the back end execute stages of the pipeline because of resource
constraints. These constraints can include issue stage fullness, execute stage fullness, or other
internal pipeline resource fullness.

Note that operations that use a different back end execute pipeline can still be issued if there are
pipeline resources available to allow it.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 92

4.7.3 0x3C STALL No operation sent for execution

This event counts cycles whenever the CPU does not send an operation for execution. That
condition can be caused by a variety of reasons such as memory delays or a full pipeline.

4.7.4 0x3D STALL_SLOT_BACKEND No operation sent for execution on a
slot due to the back end

This event counts cycles whenever the decode/rename/dispatch stage is unable to send
operations from a rename stage slot to be issued to the back end execute stages of the pipeline
because of resource constraints. These constraints can include issue stage fullness, execute stage
fullness, or other internal pipeline constraints. If multiple available slots in the rename stage are not
able to be send operations to the back end stages for execution, then this event will count multiple
times per cycle.

The dividing line between front end and back end is the rename stage of the pipeline.

For Neoverse N2 CPU versions prior to r0p2, erratum 2446526 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

This event is a subset of the 0X3F STALL_SLOT event.

4.7.5 0x3E STALL_SLOT_FRONTEND No operation sent for execution on a
slot due to the front end

This event counts whenever a rename stage slot (in the decode/rename/dispatch portion of the
pipeline) does not have an operation to be sent to the back end stages of the pipeline, because
that slot has not been provided an operation by the front end (fetch) stages of the pipeline.

If multiple available slots in the rename stage do not have operations provided by the front-end
stages, then this event will count multiple times per cycle.

The dividing line between front end and back end is the rename stage of the pipeline.

For Neoverse N2 CPU versions prior to r0p3, erratum 2738454 could affect this PMU event. For
Neoverse N2 CPU versions prior to r0p2, erratum 2446526 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

This event is a subset of the 0X3F STALL_SLOT event.

4.7.6 0x3F STALL_SLOT No operation sent for execution on a slot

This event counts whenever a slot in the rename stage of the pipeline does not send operations to
be executed in the back end stages of the pipeline. This could be due either to resource
constraints of the back end stages or to slots not being provided operations by the front end of the
pipeline.

https://developer.arm.com/
https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 92

If there are multiple slots that do not send operation for execution on the back end, then this
event will count multiple times per cycle.

For Neoverse N2 CPU versions prior to r0p3, erratum 2738454 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

This event is a superset of the 0X3D STALL_SLOT_BACKEND and 0X3E
STALL_SLOT_FRONTEND events.

4.7.7 0x4005 STALL_BACKEND_MEM No operation sent due to the back
end and memory stalls

This event counts cycles whenever an operation is not sent to an open slot on the back end stage
of the CPU pipeline for the following reasons:

• There are no open slots available on any back end pipeline stage (issue or execute) and

• There is a pending L2 (outside of the CPU memory system) miss in progress

This event is a subset of the 0X3D STALL_SLOT_BACKEND event.

https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 92

4.8 Load or store instruction related events
This section describes the following events:

• 0x68, UNALIGNED_LD_SPEC, Unaligned access, read

• 0x69, UNALIGNED_ST_SPEC, Unaligned access, write

• 0x6A, UNALIGNED_LDST_SPEC, Unaligned access

• 0x6C, LDREX_SPEC, Exclusive load speculatively executed

• 0x6D, STREX_PASS_SPEC, Successful exclusive store speculatively executed

• 0x6E, STREX_FAIL_SPEC, Failed exclusive store speculatively executed

• 0x6F, STREX_SPEC, Exclusive store speculatively executed

• 0x70, LD_SPEC, Load operation speculatively executed

• 0x71, ST_SPEC, Store operation speculatively executed

• 0x7D, DSB_SPEC, DSB speculatively executed

• 0x7E, DMB_SPEC, DMB speculatively executed

• 0x90, RC_LD_SPEC, Load-acquire operation speculatively executed

• 0x91, RC_ST_SPEC, Store-release operation speculatively executed

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Attributability

• Speculatively executed versus architecturally executed

• Aligned/Unaligned memory accesses

• CPU and DSU configuration

• Out of order execution

• Cache architecture

• Cache line sizes

• Cache terminology and behavior

• Cache maintenance operations

• Cache coherency

• L2 cache and memory interface interaction

• Cache lookup

• Cache eviction

• CMN configuration

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 92

4.8.1 0x68, UNALIGNED_LD_SPEC, Unaligned access, read

This event counts unaligned memory read instructions issued by the CPU. This event counts
unaligned accesses (as defined by the actual instruction), even if they are subsequently issued as
multiple aligned accesses.

This event does not count preload instructions (PLD, PLI).

This event is a subset of the UNALIGNED_LDST_SPEC event.

4.8.2 0x69, UNALIGNED_ST_SPEC, Unaligned access, write

This event counts unaligned memory write instructions issued by the CPU. This event counts
unaligned accesses (as defined by the actual instruction), even if they are subsequently issued as
multiple aligned accesses.

This event is a subset of the UNALIGNED_LDST_SPEC event.

4.8.3 0x6A, UNALIGNED_LDST_SPEC, Unaligned access

This event counts unaligned memory instructions issued by the CPU. This event counts unaligned
accesses (as defined by the actual instruction), even if they are subsequently issued as multiple
aligned accesses.

This event is the sum of the UNALIGNED_ST_SPEC and UNALIGNED_LD_SPEC events.

4.8.4 0x6C, LDREX_SPEC, Exclusive load speculatively executed

This event counts Load-Exclusive instructions (such as LDREX or LDX) that have been
speculatively executed.

4.8.5 0x6D, STREX_PASS_SPEC, Successful exclusive store speculatively
executed

This event counts Store-Exclusive instructions that have been speculatively executed and have
successfully completed the store operation.

4.8.6 0x6E, STREX_FAIL_SPEC, Failed exclusive store speculatively
executed

This event counts Store-Exclusive instructions that have been speculatively executed and have not
successfully completed the store operation.

4.8.7 0x6F, STREX_SPEC, Exclusive store speculatively executed

This event counts Store-Exclusive instructions that have been speculatively executed. This event is
the sum of STREX_PASS_SPEC and STREX_FAIL_SPEC events.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 92

4.8.8 0x70, LD_SPEC, Load instruction speculatively executed

This event counts any speculatively executed load instruction including Single Instruction Multiple
Data (SIMD) load instructions.

4.8.9 0x71, ST_SPEC, Store instruction speculatively executed

This event counts any speculatively executed store instruction including Single Instruction Multiple
Data (SIMD) store instructions.

4.8.10 0x7D, DSB_SPEC, DSB speculatively executed

This event counts DSB instructions that are speculatively (not just architecturally) issued to
Load/Store unit in the CPU.

4.8.11 0x7E, DMB_SPEC, DMB speculatively executed

This event counts DMB instructions that are speculatively (not just architecturally) issued to the
Load/Store unit in the CPU.

This event does not count implied barriers from load acquire/store release instructions.

4.8.12 0x90, RC_LD_SPEC, Load-acquire operation speculatively executed

This event counts any load acquire instructions (such as LDAR, LDARH, LDARB) that are
speculatively executed.

4.8.13 0x91, RC_ST_SPEC, Store-release operation speculatively executed

This event counts any store release instructions (such as STLR, STLRH, STLRB) that are
speculatively executed.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 92

4.9 General instruction related events
This section describes the following events:

• 0x08, INST_RETIRED, Instruction architecturally executed

• 0x1B, INST_SPEC, Operation speculatively executed

• 0x73, DP_SPEC, Integer data-processing operation speculatively executed

• 0x74, ASE_SPEC, Advanced SIMD operation speculatively executed

• 0x75, VFP_SPEC, Floating point operation speculatively executed

• 0x76, PC_WRITE_SPEC, PC write operation speculatively executed

• 0x77, CRYPTO_SPEC, Crypto operation speculatively executed

• 0x7C, ISB_SPEC, ISB speculatively executed

• 0x3A OP_RETIRED Micro-operation architecturally executed

• 0x3B OP_SPEC Micro-operation speculatively executed

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Attributability

• Speculatively executed versus architecturally executed

• Pipeline and operations

• Out of order execution

4.9.1 0x08, INST_RETIRED, Instruction architecturally executed

This event counts any instruction that has been architecturally executed.

For example, speculatively executed instructions that have been abandoned for a branch
mispredict is not counted. This event count should be the same for programs running on any
processor regardless of the micro-architectural implementation (as it counts instructions not
operations).

4.9.2 0x1B, INST_SPEC, Instruction speculatively executed

This event counts any instruction that has been speculatively executed.

4.9.3 0x73, DP_SPEC, Integer data-processing instruction speculatively
executed

This event counts any speculatively executed logical or arithmetic instruction, including
MOV/MVN instructions. For more information, verify the list of instructions as defined in the
event description in the Arm® Architecture Reference Manual.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 92

4.9.4 0x76, PC_WRITE_SPEC, PC write instruction speculatively executed

This event counts speculatively executed instructions which cause software changes of the PC.
These instructions include:

• Branch instructions

• Load instructions with the program counter (PC) as a destination register

• Exception instructions such as SMC or HVC

• BKPT instructions

4.9.5 0x77, CRYPTO_SPEC, Crypto instruction speculatively executed

This event counts speculatively executed Cryptographic instructions except for PMULL and
VMULL instructions.

For Neoverse N2 CPU versions prior to r0p3, erratum 2242404 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

4.9.6 0x7C, ISB_SPEC, ISB speculatively executed

This event counts speculatively executed ISB instructions.

4.9.7 0x3A OP_RETIRED Micro-operation architecturally executed

This event counts any operation (not instruction) that has been architecturally executed.

For example, speculatively executed operations that have been abandoned for a branch mispredict
will not be counted.

This event is a subset of the OP_SPEC event.

4.9.8 0x3B OP_SPEC Micro-operation speculatively executed

This event counts any operation that has been speculatively executed.

This event is a superset of the OP_RETIRED event.

https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 92

4.10 Branch related events
This section describes the following events:

• 0x10, BR_MIS_PRED, Mispredicted or not predicted branch speculatively executed

• 0x12, BR_PRED, Predictable branch speculatively executed

• 0x21, BR_RETIRED, Branch instruction architecturally executed

• 0x22, BR_MIS_PRED_RETIRED, Mispredicted branch instruction architecturally

• 0x78, BR_IMMED_SPEC, Branch immediate instructions speculatively executed

• 0x79, BR_RETURN_SPEC, Procedure return speculatively executed

• 0x7A, BR_INDIRECT_SPEC, Indirect branch speculatively executed

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Attributability

• Speculatively executed versus architecturally executed

• Pipeline and operations

• Out of order execution

4.10.1 0x10, BR_MIS_PRED, Mispredicted or not predicted branch
speculatively executed

This event counts speculatively executed branches that were either not predicted or mispredicted.
Note that the branch needs to be resolved, whether or not it is actually architecturally executed.

4.10.2 0x12, BR_PRED, Predictable branch speculatively executed

This event counts any branch instruction speculatively executed by the CPU. This event counts
any predictable branch (including B instructions), whether or not that branch is taken, and whether
or not the branch instruction is architecturally executed. This event also counts branches that
were possibly mispredicted. This event is a superset of the BR_MIS_PRED event.

4.10.3 0x21, BR_RETIRED, Branch instruction architecturally executed

This event counts all architecturally executed branches, whether the branch is taken or not.
Instructions that explicitly write to the PC are also counted.

4.10.4 0x22, BR_MIS_PRED_RETIRED, Mispredicted branch instruction
architecturally executed

This event counts any architecturally executed branch instruction (as counted by BR_RETIRED)
which is not correctly predicted and causes a pipeline flush.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 92

This event is a subset of BR_RETIRED.

4.10.5 0x78, BR_IMMED_SPEC, Branch immediate instructions
speculatively executed

This event counts immediate branch instructions which are speculatively executed. Instructions are
defined in the Arm® Architecture Reference Manual Armv8-A, and include:

• B <label>

• B.cond <label>

• BL <label>

• CBZ <Rn>, <label>

• CBNZ <Rn>, <label>

• TBZ <Rn>, <label>

• TBNZ <Rn>, <label>

4.10.6 0x79, BR_RETURN_SPEC, Procedure return instruction
speculatively executed

This event counts procedure return instructions (RET) which are speculatively executed.

4.10.7 0x7A, BR_INDIRECT_SPEC, Indirect branch instruction speculatively
executed

This event counts indirect branch instructions (such as BR Xn or a RET) which are speculatively
executed. This includes instructions that force a software change of the program counter (PC),
other than exception-generating instructions and immediate branch instructions.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 92

4.11 Exception related events
This section describes the following events:

• 0x09, EXC_TAKEN, Exception taken

• 0x0A, EXC_RETURN, Exception return

• 0x81, EXC_UNDEF, Undefined exceptions taken locally

• 0x82, EXC_SVC, Supervisor Call exception taken locally

• 0x83, EXC_PABORT, Instruction abort exception taken locally

• 0x84, EXC_DABORT, Data abort or SError taken locally

• 0x86, EXC_IRQ, IRQ exception taken locally

• 0x87, EXC_FIQ, FIQ exception taken locally

• 0x88, EXC_SMC, Secure Monitor Call exception

• 0x8A, EXC_HVC, Hypervisor Call exception

• 0x8B, EXC_TRAP_PABORT, Instruction abort exception not taken locally

• 0x8C, EXC_TRAP_DABORT, Data abort or SError not taken locally

• 0x8D, EXC_TRAP_OTHER, Other exception not taken locally

• 0x8E, EXC_TRAP_IRQ, IRQ exception not taken locally

• 0x8F, EXC_TRAP_FIQ, FIQ exception not taken locally

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Taken locally

• Memory error behavior

• Out of order execution

Please note a speculatively executed instruction or memory access cannot directly cause an
exception until that instruction or access is architecturally executed.

4.11.1 0x09, EXC_TAKEN, Exception taken

This event counts taken exceptions (IRQ, FIQ, SError, and Synchronous). Exceptions are counted
whether or not they are taken locally.

4.11.2 0x0A, EXC_RETURN, Exception return

This event counts any architecturally executed exception return instruction for both AArch32 (for
example, SUBS PC, LR, #4) and AArch64 (ERET). See the Arm® Architecture Reference Manual for a
complete list of those instructions.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 92

4.11.3 0x81, EXC_UNDEF, Undefined exceptions taken locally

This event counts the number of synchronous exceptions which are taken locally that are not SVC,
CSMC, HVC, data aborts, instruction aborts, or interrupts.

4.11.4 0x82, EXC_SVC, Supervisor Call exception taken locally

This event counts the number of SVC exceptions that are taken locally.

4.11.5 0x83, EXC_PABORT, Instruction abort exception taken locally

This event counts each synchronous exception that is taken locally and is caused by an instruction
abort.

4.11.6 0x84, EXC_DABORT, Data abort or SError taken locally

This event counts exceptions that are taken locally and are caused by data aborts or SErrors.
Conditions that could cause those exceptions are:

• Attempting to read or write memory where the MMU generates a fault.

• Attempting to read or write memory with a misaligned address.

• Interrupts from the nREI or nSEI inputs.

• Internally generated SErrors.

4.11.7 0x86, EXC_IRQ, IRQ exception taken locally

This event counts IRQ exceptions that are taken locally. This event will count IRQs delivered by the
hypervisor to a guest OS, but it will not count IRQs configured as virtual and taken by the
hypervisor.

4.11.8 0x87, EXC_FIQ, FIQ exception taken locally

This event counts FIQ exceptions that are taken locally. In real world software, that would mean
FIQs taken to EL3 from EL3. This event also counts FIQ exceptions taken to EL1 (which is not a
normal use case).

4.11.9 0x88, EXC_SMC, Secure Monitor Call exception

This event counts SMC exceptions which are taken to EL3.

4.11.10 0x8A, EXC_HVC, Hypervisor Call exception

This event counts HVC exceptions which are taken to EL2.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 92

4.11.11 0x8B, EXC_TRAP_PABORT, Instruction abort exception not taken
locally

This event counts synchronous exceptions which are not taken locally and are caused by and is
caused by an instruction abort.

4.11.12 0x8C, EXC_TRAP_DABORT, Data abort or SError not taken locally

This event counts exceptions which are not taken locally and are caused by data aborts or SError
interrupts. Conditions that could cause those exceptions are:

• Attempting to read or write memory where the MMU generates a fault.

• Attempting to read or write memory with a misaligned address.

• Interrupts from the nREI or nSEI input. Those inputs are typically not used on a Neoverse N2
system.

• Internally generated SErrors.

4.11.13 0x8D, EXC_TRAP_OTHER, Other exception not taken locally

This event counts the number of synchronous exceptions which are not taken locally that are not
SVC, CSMC, HVC, data aborts, instruction aborts, or interrupts.

4.11.14 0x8E, EXC_TRAP_IRQ, IRQ exception not taken locally

This event counts IRQs which are taken to EL2 or EL3.

4.11.15 0x8F, EXC_TRAP_FIQ, FIQ exception not taken locally

This event counts FIQs which are taken from EL0, EL1, or EL2 to EL3 (which is normal behavior for
FIQs when the application is not executing in EL3).

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 92

4.12 General CPU related events
This section describes the following events:

• 0x00, SW_INCR, Software increment

• 0x0B, CID_WRITE_RETIRED CONTEXTIDR, register write

• 0x11, CPU_CYCLES, Cycles

• 0x1D, BUS_CYCLES, Bus cycles

• 0x1E, CHAIN PMU, Counter

• 0x4004 CNT_CYCLES Constant frequency cycles

4.12.1 0x00, SW_INCR Software increment

This event counts software writes to the PMSWINC_EL0 (software PMU increment) register. The
PMSWINC_EL0 register is a manually updated counter for use by application software.

This event could be used to measure any user program event, such as accesses to a particular data
structure, by writing to the PMSWINC_EL0 register each time the data structure is accessed.

To use the PMSWINC_EL0 register and event, you must insert instructions that write to the
PMSWINC_EL0 register into the source code. Since the SW_INCR event records writes to the
PMSWINC_EL0 register, there is no need to do a read/increment/write sequence to the
PMSWINC_EL0 register.

4.12.2 0x0B, CID_WRITE_RETIRED, CONTEXTIDR register write

This event counts any architecturally executed write to the CONTEXTIDR register. Usually, that
register would contain the kernel PID and would be output with hardware trace. For more
information, see the Linux documentation around PID_IN_CONTEXTIDR at the following link:

 https://elixir.bootlin.com/linux/v4.20.17/source/arch/arm64/Kconfig.debug#L19

4.12.3 0x11, CPU_CYCLES, Cycles

This event counts CPU clock cycles (not timer cycles). The clock measured by this event is defined
as the physical clock driving the CPU logic.

If the CPU is in Wait for Interrupt (WFI) and Wait for Event (WFE) state, then this event will
continue to count.

4.12.4 0x1D, BUS_CYCLES, Bus cycles
This event counts bus cycles in the CPU. Bus cycles represent a clock cycle in which a message
could be sent or received on the interface from the CPU to the DSU wrapper used in the direct
connect configuration. Since that interface is driven at the same clock speed as the CPU, this event
is a duplicate of CPU_CYCLES. For more information, see the Arm® DynamIQ™ Shared Unit
Technical Reference Manual.

https://elixir.bootlin.com/linux/v4.20.17/source/arch/arm64/Kconfig.debug#L19

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 92

4.12.5 0x1E, COUNTER_OVERFLOW, PMU counter overflow increment

This event counts when the immediately preceding even-number counter overflows. When the
two counters are effectively chained together, the PMU counter pair implements a 64-bit counter,
with the event defined by the odd numbered counter. For example, if PMUEVCNTR2 is
programmed to measure an event, and PMU3 is programmed with the CHAIN event, then PMU2
and PMU3 will function as a 64-bit counter for the event programmed for PMU2.

4.12.6 0x4004 CNT_CYCLES Constant frequency cycles

This event counts cycles from the external system clock as measured by the CNTPCT_EL0,
Counter-timer Physical Count register. If the CPU is in Wait for Interrupt (WFI) and Wait for Event
(WFE) state, then this event will not count.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 92

4.13 SVE, Floating point, and SIMD related events
This section describes the following events:

• 0x74, ASE_SPEC, Advanced SIMD operation speculatively executed

• 0x75, VFP_SPEC, Floating point operation speculatively executed

• 0x8005, ASE_INST_SPEC, Advanced SIMD operations speculatively executed

• 0x8006, SVE_INST_SPEC, SVE operations speculatively executed

• 0x8014, FP_HP_SPEC, Half-precision floating-point operation speculatively executed

• 0x8018, FP_SP_SPEC, Single-precision floating-point operation speculatively executed

• 0x801C, FP_DP_SPEC, Double-precision floating-point operation speculatively executed

• 0x8074, SVE_PRED_SPEC, SVE predicated operations speculatively executed

• 0x8075, SVE_PRED_EMPTY_SPEC, SVE predicated operations with no active predicates
speculatively executed

• 0x8076, SVE_PRED_FULL_SPEC, SVE predicated operations speculatively executed with all
active predicates

• 0x8077, SVE_PRED_PARTIAL_SPEC, SVE predicated operations speculatively executed with
partially active predicates

• 0x8079, SVE_PRED_NOT_FULL_SPEC, SVE predicated operations speculatively executed with
a Governing predicate in which at least one element is FALSE

• 0x80BC, SVE_LDFF_SPEC, SVE First-fault load operations speculatively executed

• 0x80BD, SVE_LDFF_FAULT_SPEC, SVE First-fault load operations speculatively executed
which set FFR bit to 0

• 0x80C0, FP_SCALE_OPS_SPEC, Scalable floating-point element operations speculatively
executed

• 0x80C1, FP_FIXED_OPS_SPEC, Non-scalable floating-point element operations speculatively
executed

• 0x80E3 ASE_SVE_INT8_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest
type is 8-bit integer

• 0x80E7 ASE_SVE_INT16_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest
type is 16-bit integer

• 0x80EB ASE_SVE_INT32_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest
type is 32-bit integer

• 0x80EF ASE_SVE_INT64_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest
type is 64-bit integer

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 92

• Scalable Vector Extension

• Out of order execution

4.13.1 0x74, ASE_SPEC, Advanced SIMD operation speculatively executed

This event counts speculatively executed advanced SIMD instructions (as defined in the Arm®
Architecture Reference Manual Armv8-A).

This event does not count micro-operations that move data to or from SIMD (vector) registers.

4.13.2 0x75, VFP_SPEC, Floating point operation speculatively executed

This event counts speculatively executed floating point instructions (as defined in the Arm®
Architecture Reference Manual Armv8-A).

This event does not count instructions that move data to or from floating point (vector) registers.

4.13.3 0x8005, ASE_INST_SPEC, Advanced SIMD operations speculatively
executed

This event counts speculatively executed operations generated from advanced SIMD instructions
(as defined in the Arm® Architecture Reference Manual Armv8-A).

This event counts SIMD instructions along with any micro-operations that move data to or from
SIMD (vector) registers.

4.13.4 0x8006, SVE_INST_SPEC, SVE operations speculatively executed

This event counts speculatively executed operations generated from Scalar Vector Extension (SVE)
instructions (as defined in the Arm® Architecture Reference Manual Armv8-A).

This event does not count instructions that move data to or from SVE (vector) registers.

4.13.5 0x8014, FP_HP_SPEC, Half-precision floating-point operation
speculatively executed

This event counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
floating-point instructions, where the largest type specified in the instruction is half-precision.

4.13.6 0x8018, FP_SP_SPEC, Single-precision floating-point operation
speculatively executed

This event counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
floating-point instructions, where the largest type specified in the instruction is single precision.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 92

4.13.7 0x801C, FP_DP_SPEC, Double-precision floating-point operation
speculatively executed

This event counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
floating-point instructions, where the largest type specified in the instruction is double precision.

4.13.8 0x8074, SVE_PRED_SPEC, SVE predicated operations speculatively
executed

This event counts speculatively executed SIMD data-processing and load and store operations
generated by SVE instructions, if the SVE instruction has a governing predicate operand that
determines the active elements in that instruction.

For Neoverse N2 CPU versions prior to r0p1, errata 2218242 and 2341669 could affect this PMU
event. For more information about this erratum, please see the Arm Neoverse N2 (MP128) Software
Developer Errata Notice, available on https://developer.arm.com/.

4.13.9 0x8075, SVE_PRED_EMPTY_SPEC, SVE predicated operations with
no active predicates speculatively executed

This event counts speculatively executed SIMD data-processing and load and store operations
generated by SVE instructions, if the SVE instruction has a governing predicate operand where all
of the elements are FALSE.

For Neoverse N2 CPU versions prior to r0p1, errata 2218242 and 2341669 could affect this PMU
event. For more information about this erratum, please see the Arm Neoverse N2 (MP128) Software
Developer Errata Notice, available on https://developer.arm.com/.

This event is a subset of the SVE_PRED_SPEC event.

4.13.10 0x8076, SVE_PRED_FULL_SPEC, SVE predicated operations
speculatively executed with all active predicates

This event counts speculatively executed SIMD data-processing and load and store operations
generated by SVE instructions, if the SVE instruction has a governing predicate operand where all
of the elements are TRUE.

For Neoverse N2 CPU versions prior to r0p1, errata 2218242 and 2341669 could affect this PMU
event. For more information about this erratum, please see the Arm Neoverse N2 (MP128) Software
Developer Errata Notice, available on https://developer.arm.com/.

This event is a subset of the SVE_PRED_SPEC event.

https://developer.arm.com/
https://developer.arm.com/
https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 92

4.13.11 0x8077, SVE_PRED_PARTIAL_SPEC, SVE predicated operations
speculatively executed with partially active predicates

This event counts speculatively executed SIMD data-processing and load and store operations
generated by SVE instructions, if the SVE instruction has a governing predicate operand where the
elements are neither all TRUE or all FALSE.

For Neoverse N2 CPU versions prior to r0p1, errata 2218242 and 2341669 could affect this PMU
event. For more information about this erratum, please see the Arm Neoverse N2 (MP128) Software
Developer Errata Notice, available on https://developer.arm.com/.

This event is a subset of the SVE_PRED_SPEC event.

4.13.12 0x8079, SVE_PRED_NOT_FULL_SPEC, SVE predicated operations
speculatively executed with a Governing predicate in which at least one
element is FALSE

This event counts speculatively executed SIMD data-processing and load and store operations if
the following conditions are met:

• The operations were generated by an SVE instruction

• The SVE instruction has a governing predicate operand where at least one of the elements
is FALSE

For Neoverse N2 CPU versions prior to r0p1, erratum 2341669 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

This event is a subset of the SVE_PRED_SPEC event.

4.13.13 0x80BC, SVE_LDFF_SPEC, SVE First-fault load operations
speculatively executed

This event counts speculatively executed memory read operations due to SVE First-fault and Non-
fault load instructions.

4.13.14 0x80BD, SVE_LDFF_FAULT_SPEC, SVE First-fault load operations
speculatively executed which set FFR bit to 0

This event counts speculatively executed memory read operations due to SVE First-fault and Non-
fault load instructions where the instruction writes at least one 0 to the First Fault Register (FFR).

4.13.15 0x80C0, FP_SCALE_OPS_SPEC, Scalable floating-point element
operations speculatively executed

This event counts speculatively executed floating point operations generated by SVE instructions.
It does not count operations generated by floating point or Advanced SIMD instructions.

https://developer.arm.com/
https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 92

4.13.16 0x80C1, FP_FIXED_OPS_SPEC, Non-scalable floating-point
element operations speculatively executed

This event counts speculatively executed operations floating point operations generated by
floating point or Advanced SIMD instructions. It does not count operations generated by SVE
instructions.

4.13.17 0x80E3, ASE_SVE_INT8_SPEC, Operation counted by
ASE_SVE_INT_SPEC where the largest type is 8-bit integer

This event counts speculatively executed integer arithmetic operations due to Advanced SIMD and
SVE data-processing instructions where the largest data type specified in the instruction is 8-bit
integer.

4.13.18 0x80E7, ASE_SVE_INT16_SPEC, Operation counted by
ASE_SVE_INT_SPEC where the largest type is 16-bit integer

This event counts speculatively executed integer arithmetic operations due to Advanced SIMD and
SVE data-processing instructions where the largest data type specified in the instruction is 16-bit
integer.

4.13.19 0x80EB, ASE_SVE_INT32_SPEC, Operation counted by
ASE_SVE_INT_SPEC where the largest type is 32-bit integer

This event counts speculatively executed integer arithmetic operations due to Advanced SIMD and
SVE data-processing instructions where the largest data type specified in the instruction is 32-bit
integer.

4.13.20 0x80EF, ASE_SVE_INT64_SPEC, Operation counted by
ASE_SVE_INT_SPEC where the largest type is 64-bit integer

This event counts speculatively executed integer arithmetic operations due to Advanced SIMD and
SVE data-processing instructions where the largest data type specified in the instruction is 64-bit
integer.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 92

4.14 SPE related events
This section describes the following events:

• 0x4000, SAMPLE_POP, Sample population

• 0x4001, SAMPLE_FEED, Sample taken

• 0x4002, SAMPLE_FILTRATE, Sample taken and not removed by filtering

• 0x4003, SAMPLE_COLLISION, Sample collided with previous sample

The following architectural and micro-architectural descriptions are relevant to the events listed in
this section:

• Statistical Profiling Extension

4.14.1 0x4000, SAMPLE_POP, Sample population

This event counts operations that might be sampled when SPE is enabled on the Neoverse N2.
This event counts operations whether or not the operation was actually sampled.

If SPE is not enabled for a particular exception level or security state, operations are not counted.

For Neoverse N2 CPU versions prior to r0p3, erratum 2755354 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

4.14.2 0x4001, SAMPLE_FEED, Sample taken

This event counts whenever the sample interval counter reaches zero and is reloaded, and the
sample does not collide with the previous sample. The following samples are counted by this
event:

• Samples that are removed by filtering

• Samples that are discarded

• Samples that are not written to the Profiling Buffer

For Neoverse N2 CPU versions prior to r0p3, erratum 2664787 could affect this PMU event. For
more information about this erratum, please see the Arm Neoverse N2 (MP128) Software Developer
Errata Notice, available on https://developer.arm.com/.

4.14.3 0x4002, SAMPLE_FILTRATE, Sample taken and not removed by
filtering

This event counts each sample that is not removed by filtering.

This event is a subset of the SAMPLE_FEED event.

https://developer.arm.com/
https://developer.arm.com/

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 92

4.14.4 0x4003 SAMPLE_COLLISION Sample collided with previous sample

This event counts whenever a sample is taken when the previous sampled operation has not
completed generating its sample record.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 92

5 CPU memory system flows
The flowcharts in the following section show how the internal MMU or cache accesses work
following load or store instructions or for any instruction fetch. Events that can be counted in each
flow are numbered in the flowcharts and then listed on that page.

For MMU and TLB accesses and flows, flows will be followed for any memory access or instruction
fetch. Cacheability is determined by the page tables in the MMU, and those translations and
memory attributes for a given address are stored in the TLBs.

The flows showing cache behavior and events will only be followed if the CPU is accessing an
address that is marked as cacheable in the MMU page tables.

Please also note that other PMU events (such as events counting the number of instructions that
have been executed) may also count. However, these diagrams are only intended to show PMU
events resulting from the internal TLB/MMU and cache behaviors.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 92

5.1 Data side TLB access for a load instruction
The following flowchart describes the data side access for a read from any cacheable or non-
cacheable location

1. Events: LD_SPEC and
MEM_ACCESS and
MEM_ACCESS_RD

2. Events: L1D_TLB and
L1D_TLB_RD

3. Events: L2D_TLB and
L2D_TLB_RD

4. Events: L1D_TLB_REFILL
and L1D_TLB_REFILL_RD

5. Event: DTLB_WALK

6. Events: L2D_TLB_REFILL
and L2D_TLB_REFILL_RD

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 92

5.2 Data side TLB access for a store instruction
The following flowchart describes the data side access for a store to any cacheable or non-
cacheable location.

1. Events: ST_SPEC and
MEM_ACCESS and
MEM_ACCESS_WR

2. Events: L1D_TLB and
L1D_TLB_WR

3. Events: L2D_TLB and
L2D_TLB_WR

4. Events: L1D_TLB_REFILL and
L1D_TLB_REFILL_WR

5. Event: DTLB_WALK

6. Events: L2D_TLB_REFILL and
L2D_TLB_REFILL_WR

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 92

5.3 Instruction side TLB access
The following flowchart describes the address translation for any instruction fetch.

1. Event: L1I_TLB

2. Event: L2D_TLB

3. Event: L1I_TLB_REFILL

4. Event: ITLB_WALK

5. Event: L2D_TLB_REFILL

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 92

5.4 L1 Data cache read access
The following flowchart describes a read from a location that is marked as cacheable.

1. Events: L1D_CACHE and
L1D_CACHE_RD and
MEM_ACCESS and
MEM_ACCESS_RD

2. Events: L1D_CACHE_REFILL
and L1D_CACHE_REFILL_RD

3. Event:
L1D_CACHE_REFILL_OUTER

4. Events: L1D_CACHE_WB and
L1D_CACHE_WB_VICTIM

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 92

5.5 L1 Data cache write access
The following flowchart describes a store to a location that is marked as cacheable.

1. Events: L1D_CACHE and
L1D_CACHE_WR and
MEM_ACCESS and
MEM_ACCESS_WR

2. Events: L1D_CACHE_REFILL and
L1D_CACHE_REFILL_WR

3. Event:
L1D_CACHE_REFILL_OUTER

4. Events: L1D_CACHE_WB and
L1D_CACHE_WB_VICTIM

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 92

5.6 Instruction side cache access
The following flowchart describes an instruction fetch from the pipeline.

1. Event: L1I_CACHE

2. Event: L1I_CACHE_REFILL

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 92

5.7 L2 cache read access
The following flowchart describes an L2 read access from either the L1 I-cache or L1 D-cache.

1. Events: L2D_CACHE and
L2D_CACHE_RD

2. Events: BUS_ACCESS and
BUS_ACCESS_RD

3. Event: REMOTE_ACCESS

4. Events:
L2D_CACHE_REFILL_RD and
L2D_CACHE_REFILL

5. Events: L2D_CACHE_WB and
L2D_CACHE_WB_VICTIM

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 92

5.8 L2 cache write access
The following flowchart describes an L2 write access from the L1 D-cache.

1. Events: L2D_CACHE and
L2D_CACHE_WR

2. Events: BUS_ACCESS and
BUS_ACCESS_WR

3. Event: REMOTE_ACCESS

4. Events:
L2D_CACHE_REFILL_RD
and L2D_CACHE_REFILL

5. Events: L2D_CACHE_WB
and
L2D_CACHE_WB_VICTIM

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 92

6 Metrics
This section lists performance metrics that can be measured using different combinations of PMU
events.

There is also a performance methodology provided in the N2 Telemetry Guide, which is available
on Developer.arm.com. In addition, the Arm® Architecture Reference Manual has a section
describing meaningful combinations of common PMU events.

6.1 Metric formulas
To calculate these metrics, two or more PMU counters will be programmed with the events listed
for the metric. Both counters will be read at the same time to determine the metric value. The end
result can be multiplied by 100 (or another number) to scale the resulting metric (rate). In addition,
the denominator in the metric formula (e.g. L1I_TLB in the L1 instruction TLB miss rate metric) can
also be multiplied by a 1000 or another number to scale the results.

Instruction related events can be counted and divided by the CPU_CYCLES to determine the
instruction rate. Some examples are listed, but it can be a useful metric for most events.

In addition to being divided by CPU_CYCLES to determine the rate, events in section 4.13 can be
divided by various STALL and STALL_BACKEND operations to determine the ratio of the
instruction to stalls.

Similarly, events in section 4.13 can be divided by INST_SPEC or INST_RETIRED to determine the
ratio of the instructions to total instructions or architecturally executed instructions

6.2 Event Rates

Metric Formula

Architecturally executed Instructions Per Cycle
(IPC)

INST_RETIRED / CPU_ CYCLES

Speculatively executed Instructions Per Cycle
(IPC)

INST_SPEC / CPU_ CYCLES

Front end stall rate STALL_FRONTEND / CPU_ CYCLES

Back end stall rate STALL_BACKEND / CPU_ CYCLES

Exception rate over time EXC_TAKEN / CPU_ CYCLES

DSB rate over time DSB_SPEC / CPU_ CYCLES

DMB rate over time DMB_SPEC / CPU_ CYCLES

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 92

Metric Formula

ISB rate over time ISB_SPEC / CPU_ CYCLES

SIMD instruction rate over time ASE_SPEC / CPU_ CYCLES

6.3 TLB and MMU Related Metrics

Metric Formula

L1 data TLB miss ratio L1D_TLB_REFILL / L1D_TLB

L1 data TLB read miss rate L1D_TLB_REFILL_RD / L1D_TLB_RD

L1 data TLB write miss rate L1D_TLB_REFILL_WR / L1D_TLB_WR

L1 data TLB misses per context swap (see note
below)

L1D_TLB_REFILL / TTBR_WRITE_RETIRED

L1 instruction TLB miss rate L1I_TLB_REFILL / L1I_TLB

L1 instruction TLB misses per context swap
(see note below)

L1I_TLB_REFILL / TTBR_WRITE_RETIRED

L2 TLB miss rate L2D_TLB_REFILL / L2D_TLB

L2 TLB read miss rate L2D_TLB_REFILL_RD / L2D_TLB_RD

L2 TLB write miss rate L2D_TLB_REFILL_WR / L2D_TLB_WR

L2 TLB misses per context swap (see note
below)

L2D_TLB_REFILL / TTBR_WRITE_RETIRED

D-side page table walk rate DTLB_WALK / L1D_TLB

I-side page table walk rate ITLB_WALK / L1I_TLB

Note: If the operating system is using Kernel Page Table Isolation (KPTI) or a similar technique,
there may be additional writes to the TTBR registers.

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 92

6.4 Cache Metrics

Metric Formula

L1 I-cache miss rate L1I_CACHE_REFILL / L1I_CACHE

L1 I-cache miss per
instructions

L1I_CACHE_REFILL / INST_SPEC

L1 D-cache miss rate L1D_CACHE_REFILL / L1D_CACHE

L1 D-cache rate of cache
misses in L1 and L2

L1D_CACHE_REFILL_OUTER / L1D_CACHE_REFILL

L1D cache read miss rate L1D_CACHE_REFILL_RD / L1D_CACHE_RD

L1D cache write miss rate L1D_CACHE_REFILL_WR / L1D_CACHE_WR

L1D cache read rate L1D_CACHE_RD / L1D_CACHE

L1D cache write rate L1D_CACHE_WR / L1D_CACHE

L1D cache eviction rate L1D_CACHE_WB_VICTIM / L1D_CACHE

L2 cache miss rate L2D_CACHE_REFILL / L2D_CACHE

L2 cache read rate L2D_CACHE_RD / L2D_CACHE

L2 cache write rate L2D_CACHE_WR / L2D_CACHE

L2 cache eviction rate L2D_CACHE_WB_VICTIM / L2D_CACHE

L2 cache instruction refill
rate

 L2D_CACHE_REFILL_INST / L2D_CACHE

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 92

6.5 Pipeline Metrics
Also, most events can be divided by STALL to determine the ratio of events to pipeline stalls

Metric Formula

Stalls due to memory STALL_BACKEND_MEM / STALL_BACKEND

Stalls due to no pipeline available STALL_SLOT_BACKEND / STALL_BACKEND

Stalls due to no pipeline available on the
frontend

STALL_SLOT_FRONTEND /
STALL_FRONTEND

Indirect branch rate BR_INDIRECT_SPEC / BR_PRED

Immediate branch rate BR_IMMED_SPEC / BR_PRED

Branch misprediction rate BR_MIS_PRED_RETIRED / BR_RETIRED

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 92

6.6 Memory System Events

Metric Formula

Rate of (MTE) checked accesses MEM_ACCESS_CHECKED / MEM_ACCESS

Rate of (MTE) checked reads MEM_ACCESS_RD_CHECKED /
MEM_ACCESS_CHECKED

Rate of (MTE) checked writes MEM_ACCESS_WR_CHECKED /
MEM_ACCESS_CHECKED

Rate of unaligned accesses LDST_ALIGN_LAT / MEM_ACCESS

Rate of read transactions BUS_ACCESS_RD / BUS_ACCESS

Rate of write transactions BUS_ACCESS_WR / BUS_ACCESS

Rate of detected RAS errors MEMORY_ERROR / MEM_ACCESS

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 92

Appendix A Revisions
This appendix describes the technical changes between released issues of this document.

Table A-1 Issue 01

Change Location Affects

n/a Initial release n/a

Added following events:

0x4020 LDST_ALIGN_LAT
0x4021 LD_ALIGN_LAT

0x4022 ST_ALIGN_LAT

0x4024 MEM_ACCESS_CHECKED Ch

0x4025 MEM_ACCESS_RD_CHECKED

0x4026 MEM_ACCESS_WR_CHECKED

Also added description of MTE arch extension.

Issue 2.0 List of PMU events

Added errata descriptions to relevant events

Also added sample metrics using events.

Issue 3.0 Event descriptions

New chapter

applewebdata://AA4CF88F-72BC-4A17-9E7F-2882BE8A5C86/#_0x4020_LDST_ALIGN_LAT_Access
applewebdata://AA4CF88F-72BC-4A17-9E7F-2882BE8A5C86/#_0x4021_LD_ALIGN_LAT_Load
applewebdata://AA4CF88F-72BC-4A17-9E7F-2882BE8A5C86/#_0x4022_ST_ALIGN_LAT_Store
applewebdata://AA4CF88F-72BC-4A17-9E7F-2882BE8A5C86/#_0x4024_MEM_ACCESS_CHECKED_Checked
applewebdata://AA4CF88F-72BC-4A17-9E7F-2882BE8A5C86/#_0x4025_MEM_ACCESS_RD_CHECKED_Checke
applewebdata://AA4CF88F-72BC-4A17-9E7F-2882BE8A5C86/#_0x4026_MEM_ACCESS_WR_CHECKED_Checke

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 92

Appendix B List of PMU events by
number

0x00, SW_INCR Software increment

0x01, L1I_CACHE_REFILL L1 instruction cache refill

0x02, L1I_TLB_REFILL L1 instruction TLB refill

0x03 L1D_CACHE_REFILL L1 data cache refill

0x04 L1D_CACHE L1 data cache access

0x05 L1D_TLB_REFILL L1 data TLB refill

0x08 INST_RETIRED Instruction architecturally executed

0x09 EXC_TAKEN Exception taken

0x0A EXC_RETURN Exception return

0x0B CID_WRITE_RETIRED CONTEXTIDR register write

0x10 BR_MIS_PRED Mispredicted or not predicted branch speculatively executed

0x11 CPU_CYCLES Cycles

0x12 BR_PRED Predictable branch speculatively executed

0x13 MEM_ACCESS Data memory access

0x14 L1I_CACHE Level 1 instruction cache access

0x15 L1D_CACHE_WB L1 data cache Write-Back

0x16 L2D_CACHE L2 cache access

0x17 L2D_CACHE_REFILL L2 cache refill

0x18 L2D_CACHE_WB L2 cache write-back

0x19 BUS_ACCESS Bus access

0x1A MEMORY_ERROR Local memory error

0x1B INST_SPEC Operation speculatively executed

0x1D BUS_CYCLES Bus cycles

0x1E COUNTER_OVERFLOW PMU counter overflow increment

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 92

0x20 L2D_CACHE_ALLOCATE L2 cache allocation without refill

0x21 BR_RETIRED Branch instruction architecturally executed

0x22 BR_MIS_PRED_RETIRED Mispredicted branch instruction architecturally executed

0x23 STALL_FRONTEND No operation issued due to the front end

0x24 STALL_BACKEND No operation issued due to the back end

0x25 L1D_TLB Level 1 data TLB access

0x26 L1I_TLB Level 1 instruction TLB access

0x29 L3D_CACHE_ALLOCATE Attributable Level 3 data cache allocation without refill

0x2A L3D_CACHE_REFILL Attributable Level 3 unified cache refill

0x2B L3D_CACHE Attributable Level 3 unified cache access

0x2D L2D_TLB_REFILL Attributable L2 unified TLB refill

0x2F L2D_TLB Attributable L2 or unified TLB access

0x31 REMOTE_ACCESS Access to another socket in a multi-socket system

0x34 DTLB_WALK Access to data TLB that caused a page table walk

0x35 ITLB_WALK Access to instruction TLB that caused a page table walk

0x36 LL_CACHE_RD Last level cache access, read

0x37 LL_CACHE_MISS_RD Last level cache miss, read

0x39, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency miss

0x3A OP_RETIRED Micro-operation architecturally executed

0x3B OP_SPEC Micro-operation speculatively executed

0x3C STALL No operation sent for execution

0x3D STALL_SLOT_BACKEND No operation sent for execution on a slot due to the back end

0x3E STALL_SLOT_FRONTEND No operation sent for execution on a slot due to the front end

0x3F STALL_SLOT No operation sent for execution on a slot

0x40 L1D_CACHE_RD L1 data cache access, read

0x41 L1D_CACHE_WR L1 data cache access, write

0x42 L1D_CACHE_REFILL_RD L1 data cache refill, read

0x43 L1D_CACHE_REFILL_WR L1 data cache refill, write

0x44 L1D_CACHE_REFILL_INNER L1 data cache refill, inner

0x45 L1D_CACHE_REFILL_OUTER L1 data cache refill, outer

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 92

0x46 L1D_CACHE_WB_VICTIM L1 data cache write-back, victim

0x47 L1D_CACHE_WB_CLEAN L1 data cache write-back cleaning and coherency

0x48 L1D_CACHE_INVAL L1 data cache invalidate

0x4C L1D_TLB_REFILL_RD L1 data TLB refill, read

0x4D L1D_TLB_REFILL_WR L1 data TLB refill, write

0x4E L1D_TLB_RD L1 data TLB access, read

0x4F L1D_TLB_WR L1 data TLB access, write

0x50 L2D_CACHE_RD L2 cache access, read

0x51 L2D_CACHE_WR L2 cache access, write

0x52 L2D_CACHE_REFILL_RD L2 cache refill, read

0x53 L2D_CACHE_REFILL_WR L2 cache refill, write

0x56 L2D_CACHE_WB_VICTIM L2 cache write-back, victim

0x57 L2D_CACHE_WB_CLEAN L2 cache write-back, cleaning and coherency

0x58 L2D_CACHE_INVAL L2 cache invalidate

0x5C L2D_TLB_REFILL_RD L2 or unified TLB refill, read

0x5D L2D_TLB_REFILL_WR L2 or unified TLB refill, write

0x5E L2D_TLB_RD L2 or unified TLB access, read

0x5F L2D_TLB_WR L2 or unified TLB access, write

0x60 BUS_ACCESS_RD Bus access read

0x61 BUS_ACCESS_WR Bus access write.

0x66 MEM_ACCESS_RD Data memory access, read

0x67 MEM_ACCESS_WR Data memory access, write

0x68 UNALIGNED_LD_SPEC Unaligned access, read

0x69 UNALIGNED_ST_SPEC Unaligned access, write

0x6A UNALIGNED_LDST_SPEC Unaligned access

0x6C LDREX_SPEC Exclusive load speculatively executed

0x6D STREX_PASS_SPEC Successful exclusive store speculatively executed

0x6E STREX_FAIL_SPEC Failed exclusive store speculatively executed

0x6F STREX_SPEC Exclusive store speculatively executed

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 92

0x70 LD_SPEC Load operation speculatively executed

0x71 ST_SPEC Store operation speculatively executed

0x73 DP_SPEC Integer data-processing operation speculatively executed

0x74 ASE_SPEC Advanced SIMD operation speculatively executed

0x75 VFP_SPEC Floating point operation speculatively executed

0x76 PC_WRITE_SPEC PC write operation speculatively executed

0x77 CRYPTO_SPEC Crypto operation speculatively executed

0x78 BR_IMMED_SPEC Branch immediate instructions speculatively executed

0x79 BR_RETURN_SPEC Procedure return speculatively executed

0x7A BR_INDIRECT_SPEC Indirect branch speculatively executed

0x7C ISB_SPEC ISB speculatively executed

0x7D DSB_SPEC DSB speculatively executed

0x7E DMB_SPEC DMB speculatively executed

0x81 EXC_UNDEF Undefined exceptions taken locally

0x82 EXC_SVC Supervisor Call exception taken locally

0x83 EXC_PABORT Instruction abort exception taken locally

0x84 EXC_DABORT Data abort or SError taken locally

0x86 EXC_IRQ IRQ exception taken locally

0x87 EXC_FIQ FIQ exception taken locally

0x88 EXC_SMC Secure Monitor Call exception

0x8A EXC_HVC Hypervisor Call exception

0x8B EXC_TRAP_PABORT. Instruction abort exception not taken locally

0x8C EXC_TRAP_DABORT Data abort or SError not taken locally

0x8D EXC_TRAP_OTHER Other exception not taken locally

0x8E EXC_TRAP_IRQ IRQ exception not taken locally

0x8F EXC_TRAP_FIQ FIQ exception not taken locally

0x90 RC_LD_SPEC Load-acquire operation speculatively executed

0x91 RC_ST_SPEC Store-release operation speculatively executed

0xA0 L3_CACHE_RD L3 cache read

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 92

0x108, L2D_CACHE_REFILL_INST, L2 cache refill, fetch

0x4000, SAMPLE_POP, Sample population

0x4001, SAMPLE_FEED, Sample taken

0x4002, SAMPLE_FILTRATE, Sample taken and not removed by filtering

0x4003, SAMPLE_COLLISION, Sample collided with previous sample

0x4004 CNT_CYCLES Constant frequency cycles

0x4005 STALL_BACKEND_MEM No operation sent due to the back end and memory stalls

0x4006, L1I_CACHE_LMISS L1 instruction cache long latency miss

0x4009 L2D_CACHE_LMISS_RD L2 cache long latency miss

0x400B L3D_CACHE_LMISS_RD L3 cache long latency miss

0x4020 LDST_ALIGN_LAT Access with additional latency from alignment

0x4021 LD_ALIGN_LAT Load with additional latency from alignment

0x4022 ST_ALIGN_LAT Store with additional latency from alignment

0x4024 MEM_ACCESS_CHECKED Checked data memory access

0x4025 MEM_ACCESS_RD_CHECKED Checked data memory access, read

0x4026 MEM_ACCESS_WR_CHECKED Checked data memory access, write

0x8005, ASE_INST_SPEC, Advanced SIMD operations speculatively executed

0x8006, SVE_INST_SPEC, SVE operations speculatively executed

0x8014, FP_HP_SPEC, Half-precision floating-point operation speculatively executed

0x8018, FP_SP_SPEC, Single-precision floating-point operation speculatively executed

0x801C, FP_DP_SPEC, Double-precision floating-point operation speculatively executed

0x8074, SVE_PRED_SPEC, SVE predicated operations speculatively executed

0x8075, SVE_PRED_EMPTY_SPEC, SVE predicated operations with no active predicates
speculatively executed

0x8076, SVE_PRED_FULL_SPEC, SVE predicated operations speculatively executed with all active
predicates

0x8077, SVE_PRED_PARTIAL_SPEC, SVE predicated operations speculatively executed with
partially active predicates

0x8079, SVE_PRED_NOT_FULL_SPEC, SVE predicated operations speculatively executed with a
Governing predicate in which at least one element is FALSE

0x80BC, SVE_LDFF_SPEC, SVE First-fault load operations speculatively executed

0x80BD, SVE_LDFF_FAULT_SPEC, SVE First-fault load operations speculatively executed which
set FFR bit to 0

Arm® Neoverse™ N2 PMU Guide PJDOC-466751330-590448
Issue 3.0

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 92

0x80C0, FP_SCALE_OPS_SPEC, Scalable floating-point element operations speculatively executed

0x80C1, FP_FIXED_OPS_SPEC, Non-scalable floating-point element operations speculatively
executed

0x80E3 ASE_SVE_INT8_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest type
is 8-bit integer

0x80E7 ASE_SVE_INT16_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest
type is 16-bit integer

0x80EB ASE_SVE_INT32_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest
type is 32-bit integer

0x80EF ASE_SVE_INT64_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest
type is 64-bit integer

	1 Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Conventions
	1.3.1 Glossary
	1.3.2 Typographical conventions

	1.4 Additional reading
	1.5 Feedback
	1.5.1 Feedback on this product
	1.5.2 Feedback on content

	2 Overview
	2.1 Scope

	3 Architecture and micro-architecture definitions
	3.1 Arm Architecture definitions
	3.1.1 Attributability
	3.1.2 PMU Version
	3.1.3 Speculatively executed versus architecturally executed
	3.1.4 Taken locally
	3.1.5 Aligned/unaligned memory access
	3.1.6 Scalable Vector Extension
	3.1.7 Statistical Profiling Extension (SPE)
	3.1.8 Memory Transaction Extension (MTE)

	3.2 Neoverse N2 micro-architecture information
	3.2.1 CPU and DynamIQ shared unit configuration
	3.2.2 Pipeline and operations
	3.2.3 Out of order execution
	3.2.4 Architecturally defined events
	3.2.5 Cache architecture
	3.2.6 Cache line sizes
	3.2.7 Data side cache allocation
	3.2.8 Instruction side cache allocation
	3.2.9 Cache stashing
	3.2.10 Cache terminology and behavior
	3.2.11 Cache Maintenance Operations
	3.2.12 Cache coherency
	3.2.13 L2 cache and memory interface
	3.2.14 Cache lookup
	3.2.15 Cache eviction
	3.2.16 Unaligned accesses
	3.2.17 Memory Management Unit behavior
	3.2.18 TLB behavior
	3.2.19 TLB maintenance operations
	3.2.20 Memory error behavior
	3.2.21 Coherent Mesh Network configuration

	4 PMU event descriptions
	4.1 TLB and MMU related events
	4.1.1 0x02, L1I_TLB_REFILL, L1 instruction TLB refill
	4.1.2 0x05, L1D_TLB_REFILL, L1 data TLB refill
	4.1.3 0x1C, TTBR_WRITE_RETIRED, TTBR write architecturally executed
	4.1.4 0x25, L1D_TLB, Level 1 data TLB access
	4.1.5 0x26, L1I_TLB, Level 1 instruction TLB access
	4.1.6 0x2D, L2D_TLB_REFILL, Attributable L2 unified TLB refill
	4.1.7 0x2F, L2D_TLB, Attributable L2 unified TLB access
	4.1.8 0x34, DTLB_WALK, Access to data TLB that caused a translation (or page) table walk
	4.1.9 0x35, ITLB_WALK, Access to instruction TLB that caused a page table walk
	4.1.10 0x4C, L1D_TLB_REFILL_RD, L1 data TLB refill, read
	4.1.11 0x4D, L1D_TLB_REFILL_WR, L1 data TLB refill, write
	4.1.12 0x4E, L1D_TLB_RD, L1 data TLB access, read
	4.1.13 0x4F, L1D_TLB_WR, L1 data TLB access, write
	4.1.14 0x5C, L2D_TLB_REFILL_RD, L2 unified TLB refill, read
	4.1.15 0x5D, L2D_TLB_REFILL_WR, L2 unified TLB refill, write
	4.1.16 0x5E, L2D_TLB_RD, L2 unified TLB access, read
	4.1.17 0x5F, L2D_TLB_WR, L2 unified TLB access, write

	4.2 L1 data cache related events
	4.2.1 0x03, L1D_CACHE_REFILL, L1 data cache refill
	4.2.2 0x04, L1D_CACHE, L1 data cache access
	4.2.3 0x15, L1D_CACHE_WB, L1 data cache write-back
	4.2.4 0x39, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency miss
	4.2.5 0x40, L1D_CACHE_RD, L1 data cache access, read
	4.2.6 0x41, L1D_CACHE_WR, L1 data cache access, write
	4.2.7 0x42, L1D_CACHE_REFILL_RD, L1 data cache refill, read
	4.2.8 0x43, L1D_CACHE_REFILL_WR, L1 data cache refill, write
	4.2.9 0x44, L1D_CACHE_REFILL_INNER, L1 data cache refill, inner
	4.2.10 0x45, L1D_CACHE_REFILL_OUTER, L1 data cache refill, outer
	4.2.11 0x46, L1D_CACHE_WB_VICTIM, L1 data cache write-back, victim
	4.2.12 0x47, L1D_CACHE_WB_CLEAN, L1 data cache write-back cleaning and coherency
	4.2.13 0x48, L1D_CACHE_INVAL, L1 data cache invalidate

	4.3 L1 instruction cache related events
	4.3.1 0x01, L1I_CACHE_REFILL, L1 instruction cache refill
	4.3.2 0x14, L1I_CACHE, Level 1 instruction cache access
	4.3.3 0x4006 L1I_CACHE_LMISS L1 instruction cache long latency miss

	4.4 L2 cache related events
	4.4.1 0x16, L2D_CACHE, L2 cache access
	4.4.2 0x17, L2D_CACHE_REFILL, L2 cache refill
	4.4.3 0x18, L2D_CACHE_WB, L2 cache write-back
	4.4.4 0x20, L2D_CACHE_ALLOCATE, L2 cache allocation without refill
	4.4.5 0x50, L2D_CACHE_RD, L2 cache access, read
	4.4.6 0x51, L2D_CACHE_WR, L2 cache access, write
	4.4.7 0x52, L2D_CACHE_REFILL_RD, L2 cache refill, read
	4.4.8 0x53, L2D_CACHE_REFILL_WR, L2 cache refill, write
	4.4.9 0x56, L2D_CACHE_WB_VICTIM, L2 cache write-back, victim
	4.4.10 0x57, L2D_CACHE_WB_CLEAN, L2 cache write-back, cleaning and coherency
	4.4.11 0x58, L2D_CACHE_INVAL, L2 cache invalidate
	4.4.12 0x108, L2D_CACHE_REFILL_INST, L2 cache refill, fetch
	4.4.13 0x4009 L2D_CACHE_LMISS_RD L2 cache long latency miss

	4.5 L3 cache/external system cache related events
	4.5.1 0x29, L3D_CACHE_ALLOCATE, Attributable Level 3 data cache allocation without refill
	4.5.2 0x2A, L3D_CACHE_REFILL, Attributable Level 3 unified cache refill
	4.5.3 0x2B, L3D_CACHE, Attributable Level 3 unified cache access
	4.5.4 0x36, LL_CACHE_RD, Last level cache access, read
	4.5.5 0x37, LL_CACHE_MISS_RD, Last level cache miss, read
	4.5.6 0xA0, L3_CACHE_RD, L3 cache read
	4.5.7 0x400B L3D_CACHE_LMISS_RD L3 cache long latency miss

	4.6 Memory system related events
	4.6.1 0x13, MEM_ACCESS, Data memory access
	4.6.2 0x19, BUS_ACCESS, Bus access
	4.6.3 0x1A, MEMORY_ERROR, Local memory error
	4.6.4 0x31, REMOTE_ACCESS, Access to another socket in a multi-socket system
	4.6.5 0x60, BUS_ACCESS_RD, Bus access read
	4.6.6 0x61, BUS_ACCESS_WR, Bus access write.
	4.6.7 0x66, MEM_ACCESS_RD, Data memory access, read
	4.6.8 0x67, MEM_ACCESS_WR, Data memory access, write
	4.6.9 0x4020 LDST_ALIGN_LAT Access with additional latency from alignment
	4.6.10 0x4021 LD_ALIGN_LAT Load with additional latency from alignment
	4.6.11 0x4022 ST_ALIGN_LAT Store with additional latency from alignment
	4.6.12 0x4024 MEM_ACCESS_CHECKED Checked data memory access
	4.6.13 0x4025 MEM_ACCESS_RD_CHECKED Checked data memory access, read
	4.6.14 0x4026 MEM_ACCESS_WR_CHECKED Checked data memory access, write

	4.7 Pipeline related events
	4.7.1 0x23, STALL_FRONTEND, No operation issued due to the front end
	4.7.2 0x24, STALL_BACKEND, No operation issued due to the back end
	4.7.3 0x3C STALL No operation sent for execution
	4.7.4 0x3D STALL_SLOT_BACKEND No operation sent for execution on a slot due to the back end
	4.7.5 0x3E STALL_SLOT_FRONTEND No operation sent for execution on a slot due to the front end
	4.7.6 0x3F STALL_SLOT No operation sent for execution on a slot
	4.7.7 0x4005 STALL_BACKEND_MEM No operation sent due to the back end and memory stalls

	4.8 Load or store instruction related events
	4.8.1 0x68, UNALIGNED_LD_SPEC, Unaligned access, read
	4.8.2 0x69, UNALIGNED_ST_SPEC, Unaligned access, write
	4.8.3 0x6A, UNALIGNED_LDST_SPEC, Unaligned access
	4.8.4 0x6C, LDREX_SPEC, Exclusive load speculatively executed
	4.8.5 0x6D, STREX_PASS_SPEC, Successful exclusive store speculatively executed
	4.8.6 0x6E, STREX_FAIL_SPEC, Failed exclusive store speculatively executed
	4.8.7 0x6F, STREX_SPEC, Exclusive store speculatively executed
	4.8.8 0x70, LD_SPEC, Load instruction speculatively executed
	4.8.9 0x71, ST_SPEC, Store instruction speculatively executed
	4.8.10 0x7D, DSB_SPEC, DSB speculatively executed
	4.8.11 0x7E, DMB_SPEC, DMB speculatively executed
	4.8.12 0x90, RC_LD_SPEC, Load-acquire operation speculatively executed
	4.8.13 0x91, RC_ST_SPEC, Store-release operation speculatively executed

	4.9 General instruction related events
	4.9.1 0x08, INST_RETIRED, Instruction architecturally executed
	4.9.2 0x1B, INST_SPEC, Instruction speculatively executed
	4.9.3 0x73, DP_SPEC, Integer data-processing instruction speculatively executed
	4.9.4 0x76, PC_WRITE_SPEC, PC write instruction speculatively executed
	4.9.5 0x77, CRYPTO_SPEC, Crypto instruction speculatively executed
	4.9.6 0x7C, ISB_SPEC, ISB speculatively executed
	4.9.7 0x3A OP_RETIRED Micro-operation architecturally executed
	4.9.8 0x3B OP_SPEC Micro-operation speculatively executed

	4.10 Branch related events
	4.10.1 0x10, BR_MIS_PRED, Mispredicted or not predicted branch speculatively executed
	4.10.2 0x12, BR_PRED, Predictable branch speculatively executed
	4.10.3 0x21, BR_RETIRED, Branch instruction architecturally executed
	4.10.4 0x22, BR_MIS_PRED_RETIRED, Mispredicted branch instruction architecturally executed
	4.10.5 0x78, BR_IMMED_SPEC, Branch immediate instructions speculatively executed
	4.10.6 0x79, BR_RETURN_SPEC, Procedure return instruction speculatively executed
	4.10.7 0x7A, BR_INDIRECT_SPEC, Indirect branch instruction speculatively executed

	4.11 Exception related events
	4.11.1 0x09, EXC_TAKEN, Exception taken
	4.11.2 0x0A, EXC_RETURN, Exception return
	4.11.3 0x81, EXC_UNDEF, Undefined exceptions taken locally
	4.11.4 0x82, EXC_SVC, Supervisor Call exception taken locally
	4.11.5 0x83, EXC_PABORT, Instruction abort exception taken locally
	4.11.6 0x84, EXC_DABORT, Data abort or SError taken locally
	4.11.7 0x86, EXC_IRQ, IRQ exception taken locally
	4.11.8 0x87, EXC_FIQ, FIQ exception taken locally
	4.11.9 0x88, EXC_SMC, Secure Monitor Call exception
	4.11.10 0x8A, EXC_HVC, Hypervisor Call exception
	4.11.11 0x8B, EXC_TRAP_PABORT, Instruction abort exception not taken locally
	4.11.12 0x8C, EXC_TRAP_DABORT, Data abort or SError not taken locally
	4.11.13 0x8D, EXC_TRAP_OTHER, Other exception not taken locally
	4.11.14 0x8E, EXC_TRAP_IRQ, IRQ exception not taken locally
	4.11.15 0x8F, EXC_TRAP_FIQ, FIQ exception not taken locally

	4.12 General CPU related events
	4.12.1 0x00, SW_INCR Software increment
	4.12.2 0x0B, CID_WRITE_RETIRED, CONTEXTIDR register write
	4.12.3 0x11, CPU_CYCLES, Cycles
	4.12.4 0x1D, BUS_CYCLES, Bus cycles
	4.12.5 0x1E, COUNTER_OVERFLOW, PMU counter overflow increment
	4.12.6 0x4004 CNT_CYCLES Constant frequency cycles

	4.13 SVE, Floating point, and SIMD related events
	4.13.1 0x74, ASE_SPEC, Advanced SIMD operation speculatively executed
	4.13.2 0x75, VFP_SPEC, Floating point operation speculatively executed
	4.13.3 0x8005, ASE_INST_SPEC, Advanced SIMD operations speculatively executed
	4.13.4 0x8006, SVE_INST_SPEC, SVE operations speculatively executed
	4.13.5 0x8014, FP_HP_SPEC, Half-precision floating-point operation speculatively executed
	4.13.6 0x8018, FP_SP_SPEC, Single-precision floating-point operation speculatively executed
	4.13.7 0x801C, FP_DP_SPEC, Double-precision floating-point operation speculatively executed
	4.13.8 0x8074, SVE_PRED_SPEC, SVE predicated operations speculatively executed
	4.13.9 0x8075, SVE_PRED_EMPTY_SPEC, SVE predicated operations with no active predicates speculatively executed
	4.13.10 0x8076, SVE_PRED_FULL_SPEC, SVE predicated operations speculatively executed with all active predicates
	4.13.11 0x8077, SVE_PRED_PARTIAL_SPEC, SVE predicated operations speculatively executed with partially active predicates
	4.13.12 0x8079, SVE_PRED_NOT_FULL_SPEC, SVE predicated operations speculatively executed with a Governing predicate in which at least one element is FALSE
	4.13.13 0x80BC, SVE_LDFF_SPEC, SVE First-fault load operations speculatively executed
	4.13.14 0x80BD, SVE_LDFF_FAULT_SPEC, SVE First-fault load operations speculatively executed which set FFR bit to 0
	4.13.15 0x80C0, FP_SCALE_OPS_SPEC, Scalable floating-point element operations speculatively executed
	4.13.16 0x80C1, FP_FIXED_OPS_SPEC, Non-scalable floating-point element operations speculatively executed
	4.13.17 0x80E3, ASE_SVE_INT8_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest type is 8-bit integer
	4.13.18 0x80E7, ASE_SVE_INT16_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest type is 16-bit integer
	4.13.19 0x80EB, ASE_SVE_INT32_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest type is 32-bit integer
	4.13.20 0x80EF, ASE_SVE_INT64_SPEC, Operation counted by ASE_SVE_INT_SPEC where the largest type is 64-bit integer

	4.14 SPE related events
	4.14.1 0x4000, SAMPLE_POP, Sample population
	4.14.2 0x4001, SAMPLE_FEED, Sample taken
	4.14.3 0x4002, SAMPLE_FILTRATE, Sample taken and not removed by filtering
	4.14.4 0x4003 SAMPLE_COLLISION Sample collided with previous sample

	5 CPU memory system flows
	5.1 Data side TLB access for a load instruction
	5.2 Data side TLB access for a store instruction
	5.3 Instruction side TLB access
	5.4 L1 Data cache read access
	5.5 L1 Data cache write access
	5.6 Instruction side cache access
	5.7 L2 cache read access
	5.8 L2 cache write access

	6 Metrics
	6.1 Metric formulas
	6.2 Event Rates
	6.3 TLB and MMU Related Metrics
	6.4 Cache Metrics
	6.5 Pipeline Metrics
	6.6 Memory System Events

	Appendix A Revisions
	Appendix B List of PMU events by number

