
How to Use Perf to Debug Perf

Leo Yan <leo.yan@linaro.org>
February 7, 2024

Abstract

Debugging is for inspecting a program, for both user space and kernel
space. The perf tool contains complex logic for exchanging data through
system calls, making debugging perf a challenging practice.

This article explores various debugging techniques, organized from
simple to complex, with using the perf tool as the target program. As it
explores these debugging methods, the attention is directed towards the
perf as a debugging tool. At last, the article explains how to use perf to
debug perf.

Keywords: Linux, debug, ftrace, kprobe, uprobe, perf

Introduction

First of all, this article has no plan to address traditional debuggers, e.g. GDB
or JTAG based debuggers. These tools use stop-the-world method to debug
programs: it firstly stops a target program, then it takes chance to check the
context for the program. The context can be a software concept, e.g. a thread
or task context, a debugger can read variables from the task’s stack or heap.
The context can be a hardware context as well - when a developer is using
JTAG debugger to connect hardware and stop CPU, the hardware registers
and memory can be reviewed.

The purpose of this documentation is to discuss tools which can provide
tracing capability in runtime. The trace data, including events and variable
values, are gathered in a certain context without pausing the program for
debugging. The content will be divided into four sections:

• Printing;
• Debugging with ftrace;
• Dynamic tracing;
• Using perf to debug perf.

1

Printing

Usually, a beginner studying C programming learns the first code piece is for
printing the string ’hello world!’.

Listing 1: "Hello world!" program in C
#include <stdio.h>
int main(void)
{

printf("Hello world!\n");
return 0;

}

The above code implicitly introduces a handy tracing tool: libc’s printf().
A printing log means an event has occurred, alongside variables can be printed
out - this is perfect to act as tracing.

Then, when starting to access the Linux kernel, its equivalent function
printk() will no longer be strange. printk() is reliable in most cases, it is a
context-safe API. Even if a developer lacks knowledge of the difference within
interrupt context, thread context and bottom-half context (e.g. in softirq or
tasklet), printk() can work pretty well as a main debugging method.

On the other hand, if printk() outputs logs to the UART console, devel-
opers suffer performance penalty caused by the low speed of the UART port.
In a worse case, the printing can alter program flow and might lead to the
timing issues hardly to be reproduced.

It becomes challenging for using printing to debug a program which
crosses both user space and kernel space. The reason is printf() and printk()
store logs in separate buffers, resulting in logs that are not easily readable due
to out-of-order output.

To resolve this issue, syslog is suggested. A program needs to use syslog()
to replace printf() for routing logs to syslog service, all modules supporting
syslog in system can output logs into a central place. But syslog is not neces-
sarily deployed in a system, and many programs, including the perf, don’t
support syslog at all. As syslog may not be pluasible in some situations, we
need to explore other debugging measures.

Debugging with ftrace

If we are looking for a debugging tool with low performance penalties and
support for tracing in both user space and kernel space, ftrace appears as a
promising candidate:

• Ftrace uses a ring buffer to store trace data, allowing users to save the
trace data into a file for post-analysis. This approach helps avoid the
tracing latency caused by console.

• Ftrace supports both kernel and user space tracing. The entire trace data
is recorded in a single file and displayed in a time-ordered format, thus
the output result is friendly for review.

2

Printing in ftrace

Printing is supported in ftrace.
In the kernel, trace_printk() is used to output logs into the ftrace ring

buffer. Once you use it, you will find this API quite useful: logs saved in ftrace
buffer will not be bothered by console’s latency, and by enlarging buffer size,
you will have sufficient capacity to store extensive logs. These logs will not
flood the console immediately, you can extract logs into file whenever you
want to parse them.

A sysfs node called trace_marker that allows the user space to place logs
into ftrace buffer. Through this interface, user space events and kernel events
can be synchronized together, thus developers can understand a flow spanning
the two spaces. The kernel documentation Documentation/trace/ftrace.rst
gives an example for how to write a log into the trace_marker node in C code.
The code below is slightly tweaked for easier calling.

Listing 2: Function for writing user space events into ftrace
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

static void trace_write(const char *fmt, ...)
{

va_list ap;
char buf[256];
int trace_fd, n;

trace_fd = open("/sys/kernel/debug/tracing/trace_marker",
O_WRONLY);

if (trace_fd < 0)
return;

va_start(ap, fmt);
n = vsnprintf(buf, 256, fmt, ap);
va_end(ap);

write(trace_fd, buf, n);
}

A typical use case for trace_marker is found in ATrace, which is a part
of Google’s Perfetto tool. Perfetto is widely used for profiling Android UI
performance and depends on the ATrace to trace application events - the
trace_marker is the underlying mechanism for tracing. While this article will
remain on basic tools, it will not dive into ATrace.

Debugging perf with ftrace

Now it’s a good time point for us to apply ftrace for debugging.
The following experiment is to inspect how the AUX buffer is consumed

in perf. The AUX buffer is a ring buffer designed to store hardware trace data
from components such as Arm CoreSight, Arm SPE, Intel PT, etc.

After the trace data has been filled by a hardware IP, the kernel calls the
perf_aux_output_end() function to update the head of the buffer and send a
notification to user space.

Two buffer modes are supported: overwrite mode and normal mode. The
overwrite mode is used for snapshots. For simplicity in explanation, we solely

3

https://perfetto.dev/docs/data-sources/atrace
https://ui.perfetto.dev/

focus on the normal mode from line 493 to line 498 in the code piece below.
Line 496 saves the old head value into the aux_head variable; in line 497,
rb->aux_head is updated as a new head by adding the size to the old head.

We add tracing code in lines 500 and 501 to print the old head, the new
head and the size into ftrace.

Listing 3: The code piece of perf_aux_output_end()
481 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
482 {
483 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
484 struct perf_buffer *rb = handle->rb;
485 unsigned long aux_head;
486
487 /* in overwrite mode, driver provides aux_head via handle */
488 if (rb->aux_overwrite) {
489 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
490
491 aux_head = handle->head;
492 rb->aux_head = aux_head;
493 } else {
494 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
495
496 aux_head = rb->aux_head;
497 rb->aux_head += size;
498 }
499
500 trace_printk("old_head=0x%lx new_head=0x%lx size=0x%lx\n",
501 aux_head, rb->aux_head, size);

...
535 }

The perf tool in user space calls auxtrace_mmap__read_head() to retrieve
the latest head of the buffer. As shown from lines 1869 to 1875 in the below
code, it handles the overflow case by using a mask or dividing by the buffer
length. Finally, a delta between the old head and the new head is calculated,
taking into account any wrapping around, which is accomplished between
line 1877 and line 1880.

It already contains debugging code at line 1866 for printing logs, but it only
outputs messages to a terminal or a log file, we have no chance to print them
with kernel logs together. This is why the trace_write() function at line 1882
is added to write logs into the ftrace buffer via the trace_maker interface.

Listing 4: The code piece of __auxtrace_mmap__read()
1844 static int __auxtrace_mmap__read(struct mmap *map,
1845 struct auxtrace_record *itr,
1846 struct perf_tool *tool, process_auxtrace_t fn,
1847 bool snapshot, size_t snapshot_size)
1848 {
1849 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1850 u64 head, old = mm->prev, offset, ref;
1851 unsigned char *data = mm->base;
1852 size_t size, head_off, old_off, len1, len2, padding;
1853 union perf_event ev;
1854 void *data1, *data2;
1855 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1856
1857 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1858
1859 if (snapshot &&
1860 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1861 return -1;
1862

4

1863 if (old == head)
1864 return 0;
1865
1866 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1867 mm->idx, old, head, head - old);
1868
1869 if (mm->mask) {
1870 head_off = head & mm->mask;
1871 old_off = old & mm->mask;
1872 } else {
1873 head_off = head % mm->len;
1874 old_off = old % mm->len;
1875 }
1876
1877 if (head_off > old_off)
1878 size = head_off - old_off;
1879 else
1880 size = mm->len - (old_off - head_off);
1881
1882 trace_write("%s: old_offset=0x%lx head_offset=0x%lx size=0x%lx\n",
1883 __func__, old_off, head_off, size);

...
1957 }

Rebuild the Linux kernel and perf with the added printing code, reboot
the system, then it will be ready for debugging.

To prepare a fresh context for ftrace before running the test, you can use
several commands:

Listing 5: Initialization ftrace
Stop tracing
echo 0 > /sys/kernel/debug/tracing/tracing_on

Cleanup ftrace data
echo > /sys/kernel/debug/tracing/trace

Start tracing
echo 1 > /sys/kernel/debug/tracing/tracing_on

Then, run the test and stop tracing:

Listing 6: Run test and stop tracing
Run test
perf record -e cs_etm// -- ls

Stop tracing
echo 0 > /sys/kernel/debug/tracing/tracing_on

At last, you can dump tracing log:

Listing 7: Dump ftrace tracing
cat /sys/kernel/debug/tracing/trace

tracer: nop
#
entries-in-buffer/entries-written: 7/7 #P:6
#
_-----=> irqs-off/BH-disabled
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / _-=> migrate-disable
|||| / delay
TASK-PID CPU# ||||| TIMESTAMP FUNCTION

5

| | | ||||| | |
ls-2041 [003] d..3. 220.497444: perf_aux_output_end: old_head=0x0

new_head=0xe26a0 size=0xe26a0
ls-2041 [003] d..3. 220.498274: perf_aux_output_end: old_head=0xe26a0

new_head=0xf0da0 size=0xe700
ls-2041 [003] d..3. 220.500091: perf_aux_output_end: old_head=0xf0da0

new_head=0xf61a0 size=0x5400
ls-2041 [003] d..3. 220.500743: perf_aux_output_end: old_head=0xf61a0

new_head=0x108080 size=0x11ee0
ls-2041 [003] d..3. 220.502813: perf_aux_output_end: old_head=0x108080

new_head=0x119dd0 size=0x11d50
ls-2041 [003] d..1. 220.508788: perf_aux_output_end: old_head=0x119dd0

new_head=0x1d5310 size=0xbb540
perf-2040 [002] 220.508985: tracing_mark_write:

__auxtrace_mmap__read: old_offset=0x0 head_offset=0x1d5310 size=0
x1d5310

The logs show that the perf_aux_output_end() function has been invoked
multiple times in the kernel. The perf tool called __auxtrace_mmap__read()
once to read out all trace data from the AUX buffer. The writing to the AUX
buffer in the kernel and the reading in user space are not paired. It’s apparent
that the perf tool is not necessarily woken up every time the kernel stores trace
data. Nevertheless, we still don’t know the scheduling within this flow, which
will be discussed soon.

Tracepoints in ftrace

In the log above, "tracer: nop" indicates that no tracer is enabled. The
naming ’ftrace’ is derived from ’function trace’, users can enable function
tracer or function graph tracer for function-based tracing. Over time, ftrace
has extended to support other tracers, for example, the latency tracer is for
profiling scheduling latency.

Furthermore, ftrace provides tracepoints which are predefined and in-
voked in the kernel, which are commonly known as "static tracepoints". After
the system boots up, you can see the available tracepoints in the subfolder
events under the ftrace’s debugfs folder.

More importantly, ftrace can combine printing, tracers, and tracepoints
together for debugging. The previous section was absent to show how the
perf tool is waken up in the test, the scheduler tracepoints can help us to easily
understand scheduling behaviours. By enabling the tracepoints, we get logs:

Listing 8: Combining printing and sched tracepoints in ftrace
Enable scheduler tracepoints
echo 1 > /sys/kernel/debug/tracing/events/sched/enable

Run test
perf record -e cs_etm// -- ls

Stop tracing
echo 0 > /sys/kernel/debug/tracing/tracing_on

Dump tracing data
cat /sys/kernel/debug/tracing/trace

_-----=> irqs-off/BH-disabled
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / _-=> migrate-disable

6

|||| / delay
TASK-PID CPU# ||||| TIMESTAMP FUNCTION
| | | ||||| | |
...

ls-2660 [003] d..1. 4755.179918: perf_aux_output_end: old_head=0x11c460
new_head=0x21d7a0 size=0x101340

ls-2660 [003] d.h4. 4755.179979: sched_waking: comm=perf pid=2659 prio
=120 target_cpu=001

<idle>-0 [001] dNh2. 4755.179998: sched_wakeup: comm=perf pid=2659 prio
=120 target_cpu=001

<idle>-0 [001] d..2. 4755.180002: sched_switch: prev_comm=swapper/1
prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=perf next_pid=2659
next_prio=120

ls-2660 [003] d.h2. 4755.180014: sched_stat_runtime: comm=ls pid=2660
runtime=4493620 [ns]

perf-2659 [001] 4755.180089: tracing_mark_write:
__auxtrace_mmap__read: old_offset=0x0 head_offset=0x21d7a0 size=0
x21d7a0

The logs show that the profiled program ls stored hardware tracing data
into AUX buffer. Then it woke up the perf process in the sched_waking event.
Afterwards, the CPU1 was pulled out from idle, and the scheduler placed
the perf process to run on it. We can know that the ls program and the perf
running on two different CPUs, so that avoid performance degradation due
to parallel execution during profiling.

However, the printing and static tracepoints in ftrace are not efficient, as
we must rebuild the source code to add tracing. We will explore dynamic
tracing to add tracepoints on the fly.

Dynamic tracing

If you have experience with debugger, an often used feature is breakpoint. You
select a code line, set a breakpoint, and then kick off the program to run. When
the program reaches the breakpoint, it halts, and the debugger takes over
control. At this point, since the program is stopped, you can take your time to
read variables, review memory content, and dump CPU general registers.

An aspect of a breakpoint is it can be set as either a hardware breakpoint or
a software breakpoint. A hardware breakpoint is to set an address in the CPU’s
debug register, while a software breakpoint uses the break instruction (the Arm
instruction is BRK) to replace an original instruction at the specified address.
Both methods ultimately interrupt the program execution and transfer control
to the debugger for further inspection.

We can take dynamic tracing as a self-hosted debugger, often referred to
as probe in Linux. When we add a probe, a break instruction is injected into a
specified address, and an event is attached to it for accessing additional data.
The original instruction is copied to somewhere for a single-step execution.

Ftrace provides kprobe and uprobe for adding probe in the kernel and user
space respectively. We will demonstrate how to use them.

Adding probe in the kernel

The kprobe provides the sysfs node kprobe_events under the ftrace’s umbrella
for adding dynamic tracepoints.

7

Adding a probe requires specifying two things: the probed address and
the inspected data. The file Documentation/trace/kprobetrace.rst in the
kernel tree explains the kprobe syntax.

An obstacle to using kprobe is figuring out the appropriate address and
determining where the interested variables are stored. Tracing a function’s
entry or return is straightforward, but determining the address becomes chal-
lenging when intending to observe in the middle of the function. Arguments
or local variables might be stored in general registers or in the stack, and it’s
possible that a variable is located in the heap.

Therefore, we need to understand how a Linux kernel image is compiled.
We can disassemble a kernel ELF file with the objdump command. When
working in a cross compilation environment for Arm64, you need to use the
command aarch64-linux-gnu-objdump instead. The command below uses
two options for the disassembly: the option ’-d’ is for displaying assembler,
and the option ’-S’ is for dumping the source code so we can intermix C code
with assembly instructions.

Listing 9: Dumping disassembly for the kernel image
aarch64-linux-gnu-objdump -S -d vmlinux > kernel.objdump

In addition to the knowledge of assembly language, understanding the
general-purpose register usage in the procedure call is crucial for reading dis-
assembly. The documentation AAPCS64 defines the Procedure Call Standard
for AArch64. Applying the prerequisite knowledge, let’s take a closer look at
the disassembly of the perf_aux_output_end() function.

Listing 10: Disassembly of perf_aux_output_end()
ffff8000802a0ee0 <perf_aux_output_end>:
ffff8000802a0ee0: d503201f nop
ffff8000802a0ee4: d503201f nop
{
ffff8000802a0ee8: d503233f paciasp
ffff8000802a0eec: a9bd7bfd stp x29, x30, [sp, #-48]!
ffff8000802a0ef0: aa0103e2 mov x2, x1
ffff8000802a0ef4: 910003fd mov x29, sp
ffff8000802a0ef8: a90153f3 stp x19, x20, [sp, #16]
ffff8000802a0efc: aa0003f3 mov x19, x0
ffff8000802a0f00: f90013f5 str x21, [sp, #32]

struct perf_buffer *rb = handle->rb;
ffff8000802a0f04: f9400414 ldr x20, [x0, #8]

bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
ffff8000802a0f08: f9401000 ldr x0, [x0, #32]

if (rb->aux_overwrite) {
ffff8000802a0f0c: b940b681 ldr w1, [x20, #180]

bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
ffff8000802a0f10: 12000015 and w21, w0, #0x1

if (rb->aux_overwrite) {
ffff8000802a0f14: 34000741 cbz w1, ffff8000802a0ffc <perf_aux_output_end+0x11c>

aux_head = handle->head;
ffff8000802a0f18: f9401661 ldr x1, [x19, #40]

handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
ffff8000802a0f1c: b27f0000 orr x0, x0, #0x2
ffff8000802a0f20: f9001260 str x0, [x19, #32]

rb->aux_head = aux_head;
ffff8000802a0f24: aa0103e0 mov x0, x1
ffff8000802a0f28: f9004a80 str x0, [x20, #144]

...

8

https://github.com/ARM-software/abi-aa/releases/download/2023Q3/aapcs64.pdf

handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
ffff8000802a0ffc: 927ef800 and x0, x0, #0xfffffffffffffffd
ffff8000802a1000: f9001260 str x0, [x19, #32]

aux_head = rb->aux_head;
ffff8000802a1004: f9404a81 ldr x1, [x20, #144]

rb->aux_head += size;
ffff8000802a1008: 8b020020 add x0, x1, x2
ffff8000802a100c: 17ffffc7 b ffff8000802a0f28 <perf_aux_output_end+0x48>
ffff8000802a1010: d503201f nop
ffff8000802a1014: d503201f nop

ffff8000802a1018 <rb_alloc>:
ffff8000802a1018: d503201f nop
ffff8000802a101c: d503201f nop

page->mapping = NULL;
__free_page(page);

}

AAPCS64 defines that registers x0 - x7 are used to pass function arguments.
perf_aux_output_end() has two arguments: the first one is an output handler,
and the second one is the filled buffer size. When it is called, the registers
x0 and x1 hold values for these two arguments, respectively. At the address
0xffff8000802a0ef0, the instruction is "move x2, x1", which moves the size
value in the register x1 into x2. Later in the function, the register x2 holds this
value while x1 is assigned to intermediate values.

The register x20 is assigned at 0xffff8000802a0f04 for a pointer value
pointing to structure perf_buffer. Then, at the address 0xffff8000802a0f0c,
the rb->aux_overwrite is loaded. Since this field has an offset of 180 in the
structure perf_buffer, the instruction "ldr w1, [x20, #180]" loads it into
the register w1 (using w1 as target register means loading value into the x1
with upper 4 bytes zeroed).

At 0xffff8000802a0f14, the instruction "cbz w1, ffff8000802a0ffc"
compares the buffer mode. Now we are only interesed in the normal mode and
w1 is zero in this case, as a result, the instruction will jump to 0xffff8000802a0ffc.

From there, it sets the handle->aux_flags and retrieves the old buffer
head into the register x1 at 0xffff8000802a1004 - the instruction is "ldr x1,
[x20, #144]", 144 is the offset of the buffer’s head in the structure.

As we know, x2 contains the written buffer size. It is added to the old
buffer head in x1 for a new buffer head and is stored back into the register x0.
This operation is accomplished at 0xffff8000802a1008.

The consecutive address 0xffff8000802a100c would be a good trace point,
with registers x0, x1 and x2 containing the values we want to dump. To achieve
this, we can add a probe with the following command:

Listing 11: Adding a kprobe with raw address and registers
cd /sys/kernel/debug/tracing/
echo ’p:myprobe 0xffff8000802a100c new_head=%x0:x64 old_head=%x1:x64 size=%x2:x64’ \

> kprobe_events

In the command, ’p’ means to add a probe, and ’myprobe’ is the event
name for the probe. The address 0xffff8000802a100c is where the probe is
inserted. The subsequent arguments are for dumping values. The option
’new_head=%x0:x64’ means a value named as ’new_head’, reading from the
register x0 and printing as the 64-bit hexadecimal type ’x64’. The later options

9

follow the same format.
Improving readability for the kprobe command is plausible. We can use the

’function name + offset’ format to replace an arbitrary address for specifying
a probe address. This is more readable and will not be bothered by address
alterations caused by a rebuild:

Listing 12: Adding a kprobe with ’function_name+offset’
echo ’p:myprobe perf_aux_output_end+0x12c new_head=%x0:x64 \

old_head=%x1:x64 size=%x2:x64’ > kprobe_events

Moreover, the probe supports fetching memory with a fetch register and
an offset (the syntax is ’+/-offset(REG)’). In this case, the old head is kept in
two places: it is loaded into x1, and it’s stored in the address pointed to by x20
plus 144. Instead of accessing register x1 to retrieve the old head, we can use
’+144(%x20)’ for the same purpose. Thus, the command can be updated as:

Listing 13: Adding a kprobe with the variable format ’+off(%reg)’
echo ’p:myprobe perf_aux_output_end+0x12c new_head=%x0:x64 \

old_head=+144(%x20):x64 size=%x2:x64’ > kprobe_events

Adding probe in user space

Similarly to kprobe, ftrace provides a sysfs node uprobe_events for inserting
a probe into a user space program. We can apply the methodology discussed
in the previous section to analyze the disassembly of the perf program.

Firstly, generate the disassembly for the perf with the command:

Listing 14: Generating disassembly for the perf program
aarch64-linux-gnu-objdump -S -d perf > perf.objdump

In the dump file, we can get the disasembly for __auxtrace_mmap__read().

Listing 15: Disassembly of __auxtrace_mmap__read()
00000000002077f8 <__auxtrace_mmap__read>:

static int __auxtrace_mmap__read(struct mmap *map,
struct auxtrace_record *itr,
struct perf_tool *tool, process_auxtrace_t fn,
bool snapshot, size_t snapshot_size)

{
...

if (head_off > old_off)
2079a0: f9403fe1 ldr x1, [sp, #120]
2079a4: f94043e0 ldr x0, [sp, #128]
2079a8: eb00003f cmp x1, x0
2079ac: 540000c9 b.ls 2079c4 <__auxtrace_mmap__read+0x1cc> // b.plast

size = head_off - old_off;
2079b0: f9403fe1 ldr x1, [sp, #120]
2079b4: f94043e0 ldr x0, [sp, #128]
2079b8: cb000020 sub x0, x1, x0
2079bc: f9003be0 str x0, [sp, #112]
2079c0: 14000008 b 2079e0 <__auxtrace_mmap__read+0x1e8>
else

size = mm->len - (old_off - head_off);
2079c4: f9405be0 ldr x0, [sp, #176]
2079c8: f9400c01 ldr x1, [x0, #24]

10

2079cc: f9403fe2 ldr x2, [sp, #120]
2079d0: f94043e0 ldr x0, [sp, #128]
2079d4: cb000040 sub x0, x2, x0
2079d8: 8b000020 add x0, x1, x0
2079dc: f9003be0 str x0, [sp, #112]

if (snapshot && size > snapshot_size)
2079e0: 39407fe0 ldrb w0, [sp, #31]

...
}

The truncated disassembly piece is for reading the old head and the latest
head, and calculating the the filled buffer size. The ’if’ branch handles the
normal case and the ’else’ branch handles the wrap-around case. In the
end, both branches run to the address 2079e0 (see the branch instruction "b
2079e0" at 2079c0), we can select it as the probed address.

From the load and store instructions, we can know variables are stored
in the stack. If it falls into the "if" branch, the instruction "ldr x1, [sp,
#120]" loads the head from the stack with an offset 120, and "ldr x0, [sp,
#128]" fetches the old head from the stack with an offset 128. The filled
buffer size is calculated as the delta between the head and the old head, and it
is stored back into the stack with the instcution "str x0, [sp, #112]", the
offset is 112. The "else" branch does the same for storing the variables into
the stack.

Consequently, we can use the command to inject a user probe:

Listing 16: Adding a uprobe in the perf program
echo ’p /mnt/linux-kernel/tools/perf/perf:0x2079e0 \

old_off=+128(%sp):x64 head_off=+120(%sp):x64 size=+112(%sp):x64’ > uprobe_events

Now we have known how to add probes for kernel and user space, we
just need to re-run the test and capture the trace log.

Listing 17: Tracing with probes
Change to tracing folder
cd /sys/kernel/debug/tracing/

Add kernel probe
echo ’p:myprobe perf_aux_output_end+0x12c new_head=%x0:x64 \

old_head=+144(%x20):x64 size=%x2:x64’ > kprobe_events

Enable the kprobe tracepoint
echo 1 > events/kprobes/myprobe/enable

Add user space probe
echo ’p /mnt/linux-kernel/tools/perf/perf:0x2079e0 \

old_off=+128(%sp):x64 head_off=+120(%sp):x64 size=+112(%sp):x64’ > uprobe_events

Enable the user space tracepoint
echo 1 > events/uprobes/p_perf_0x2079e0/enable

Start tracing
echo 1 > tracing_on

Run test
perf record -e cs_etm// -- ls

Stop tracing
echo 0 > tracing_on

Dump tracing data

11

cat trace

tracer: nop
#
entries-in-buffer/entries-written: 7/7 #P:6
#
_-----=> irqs-off/BH-disabled
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / _-=> migrate-disable
|||| / delay
TASK-PID CPU# ||||| TIMESTAMP FUNCTION
| | | ||||| | |

ls-3480 [005] d..3. 13312.444215: myprobe: (perf_aux_output_end+0x12c/0
x138) new_head=0xd71f0 old_head=0x0 size=0xd71f0

ls-3480 [005] d..3. 13312.444779: myprobe: (perf_aux_output_end+0x12c/0
x138) new_head=0xe22a0 old_head=0xd71f0 size=0xb0b0

ls-3480 [005] d..3. 13312.446907: myprobe: (perf_aux_output_end+0x12c/0
x138) new_head=0xf2950 old_head=0xe22a0 size=0x106b0

ls-3480 [005] d..3. 13312.449854: myprobe: (perf_aux_output_end+0x12c/0
x138) new_head=0x10e470 old_head=0xf2950 size=0x1bb20

ls-3480 [005] d..3. 13312.456476: myprobe: (perf_aux_output_end+0x12c/0
x138) new_head=0x1ac6e0 old_head=0x10e470 size=0x9e270

ls-3480 [005] d..1. 13312.460459: myprobe: (perf_aux_output_end+0x12c/0
x138) new_head=0x243560 old_head=0x1ac6e0 size=0x96e80

perf-3479 [002] DNZff 13312.460598: p_perf_0x2079e0: (0xaaaad0f979e0)
old_off=0x0 head_off=0x243560 size=0x243560

Using perf to debug perf

Things are not perfect. Kprobe and uprobe inherently require developers to
acquire intense knowledge before using them. This is why we move eyes to
the perf tool. The perf tool is capable of reading ELF files and annotating with
source code. It provides a much more user-friendly way to set up a probe.

The command ’perf probe’ is for both kprobe and uprobe. The two
options ’–-line’ and ’–-vars’ in the command are quite handy. The former
is for locating code lines, and the latter one gives out variables avaliable for
tracing. After finalizing the traced address and variables, the option ’–-add’
is used to add a probe. If the tracepoint is no longer needed, we can use the
option ’–-del’ to remove it.

Let’s see how to use perf to debug perf.

Building binaries with debugging info

As said, the perf tool can understand the debugging info in an ELF file. Build-
ing is required to enable debugging options so that the perf tool has sufficient
information to connect the binary with source code.

The example below sets up the Linux kernel debug configurations. When
CONFIG_DEBUG_INFO is enabled, the compiler option ’-g’ is turned on. The
configurations CONFIG_DEBUG_INFO_DWARF5 and CONFIG_DEBUG_INFO_BTF are
selected to enable the DWARF5 debug data format and BPF type format. At
last, CONFIG_DEBUG_INFO_REDUCED is disabled to avoid stripping debugging
information from the vmlinux.

Listing 18: Building Linux kernel with debugging info

12

cd /path/to/kernel/
./scripts/config -e CONFIG_DEBUG_INFO
./scripts/config -e CONFIG_DEBUG_INFO_DWARF5
./scripts/config -e CONFIG_DEBUG_INFO_BTF
./scripts/config -d CONFIG_DEBUG_INFO_REDUCED

It’s also necessary to enable compiler’s debug option and mute the op-
timization option when building the perf. This can be achieved by sim-
ply appending the option ’DEBUG=1’ in the make command. The option
’CORESIGHT=1’ is for support Arm CoreSight decoder in the tool.

Listing 19: Building perf with debugging info
cd /path/to/kernel/tools/perf
make DEBUG=1 CORESIGHT=1

Adding a probe in the kernel

To learn which source code lines in perf_aux_output_end() are suitable for
injecting a tracepoint, we can use option ’–-line’ in the ’perf probe’ com-
mand.

Perf needs the vmlinux file. The vmlinux path can be offered by the option
’-k’ or ’–-vmlinux’, if not, it is assumed to be placed in the same folder as the
current working directory or in any of the predefined paths in the structure
vmlinux_paths_upd. The option ’-s’ followed by a path is used to specify the
Linux kernel source, which should be consistent with the built kernel image,
in below case, the kernel source folder is ’/mnt/linux-kernel/’.

Listing 20: Perf command to show probe lines in perf_aux_output_end()
perf probe --line "perf_aux_output_end" -k ./vmlinux -s /mnt/linux-kernel/

As result, we can get output:

Listing 21: Annotation for probe lines of perf_aux_output_end()
<perf_aux_output_end@.///kernel/events/ring_buffer.c:0>

0 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)

{
bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);

3 struct perf_buffer *rb = handle->rb;
unsigned long aux_head;

/* in overwrite mode, driver provides aux_head via handle */
if (rb->aux_overwrite) {

8 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;

10 aux_head = handle->head;
rb->aux_head = aux_head;

} else {
13 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;

15 aux_head = rb->aux_head;
16 rb->aux_head += size;

}

/*
* Only send RECORD_AUX if we have something useful to communicate
*
* Note: the OVERWRITE records by themselves are not considered

13

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/util/symbol.c?h=v6.8-rc1#n2246

* useful, as they don’t communicate any *new* information,
* aside from the short-lived offset, that becomes history at
* the next event sched-in and therefore isn’t useful.
* The userspace that needs to copy out AUX data in overwrite
* mode should know to use user_page::aux_head for the actual
* offset. So, from now on we don’t output AUX records that
* have *only* OVERWRITE flag set.
*/

31 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
32 perf_event_aux_event(handle->event, aux_head, size,

handle->aux_flags);

35 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
if (rb_need_aux_wakeup(rb))

wakeup = true;

39 if (wakeup) {
40 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
41 handle->event->pending_disable = smp_processor_id();
42 perf_output_wakeup(handle);

}

45 handle->event = NULL;

47 WRITE_ONCE(rb->aux_nest, 0);
/* can’t be last */
rb_free_aux(rb);

50 ring_buffer_put(rb);
}

The tool annotates lines with prefixed numbers that are candidates for
probes. The buffer head is calculated from line 8 to line 16. After that, line 31
is a good place to observe the calculation result.

Next, we intend to check which variables are available at the line 31 of the
function. So the option ’–-vars’ can be used with specifying the source code
line with format ’function_name:line_number’:

Listing 22: Perf command to show probe variables in perf_aux_output_end()
perf probe --vars "perf_aux_output_end:31" -s /mnt/linux-kernel/

The output ’@<perf_aux_output_end+68>’ indicates that source code line
mapped to the offset of 68 from the start of the function. Then, there are five
local variables availiable for tracing. If we recall the previous analysis, we
know that aux_head holds the old head, rb->aux_head is for the new head,
and the variable size presents the filled size.

Listing 23: Annotation for probe variables of perf_aux_output_end()
Available variables at perf_aux_output_end:31

@<perf_aux_output_end+68>
bool wakeup
long unsigned int aux_head
long unsigned int size
struct perf_buffer* rb
struct perf_output_handle* handle

Now, use the option ’–-add’ to add a probe in the kernel.

Listing 24: Adding probe in perf_aux_output_end() with ’perf probe’
perf probe --add "perf_aux_output_end:31 old_head=aux_head \

new_head=rb->aux_head:x64 size=size:x64" -s /mnt/linux-kernel/
Added new event:

14

probe:perf_aux_output_end_L31 (on perf_aux_output_end:31 with old_head=aux_head
new_head=rb->aux_head:x64 size=size:x64)

You can now use it in all perf tools, such as:

perf record -e probe:perf_aux_output_end_L31 -aR sleep 1

The advantage of perf is that it allows users to write readable expression
and converts to the low-level probe syntax with raw addresses and registers.
This can significantly reduce the difficulty of setting up probes.

Adding a probe in the perf

The rest is to apply the same steps for adding a probe in the perf tool.
Firstly, we display the source code lines for the __auxtrace_mmap__read()

function. To do this, We need to specify the traced executable with the option
’-x’ or ’–-exec’.

Listing 25: Perf command to show probe lines in __auxtrace_mmap__read()
perf probe -x /mnt/linux-kernel/tools/perf/perf --line "__auxtrace_mmap__read"

The dumping below shows that the size calculation extends until line 36,
and line 38 would be a suitable location for injecting a probe.

Listing 26: Annotation for probe lines of __auxtrace_mmap__read()
<__auxtrace_mmap__read@/mnt/linux-kernel/tools/perf/util/auxtrace.c:0>

0 static int __auxtrace_mmap__read(struct mmap *map,
<__auxtrace_mmap__read@/mnt/linux-kernel/tools/perf/util/auxtrace.c:0>

0 static int __auxtrace_mmap__read(struct mmap *map,
struct auxtrace_record *itr,
struct perf_tool *tool, process_auxtrace_t fn,
bool snapshot, size_t snapshot_size)

4 {
5 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
6 u64 head, old = mm->prev, offset, ref;
7 unsigned char *data = mm->base;

size_t size, head_off, old_off, len1, len2, padding;
union perf_event ev;
void *data1, *data2;

11 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));

13 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);

15 if (snapshot &&
16 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
17 return -1;

19 if (old == head)
20 return 0;

22 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64
"\n",

mm->idx, old, head, head - old);

25 if (mm->mask) {
26 head_off = head & mm->mask;
27 old_off = old & mm->mask;

} else {
29 head_off = head % mm->len;
30 old_off = old % mm->len;

}

33 if (head_off > old_off)

15

34 size = head_off - old_off;
else

36 size = mm->len - (old_off - head_off);

38 if (snapshot && size > snapshot_size)
39 size = snapshot_size;
...

}

We confirm which variables are accessible at the line 38 of the function
with option ’–-vars’.

Listing 27: Annotation for probe variables of __auxtrace_mmap__read()
perf probe -x /mnt/linux-kernel/tools/perf/perf --vars "__auxtrace_mmap__read:38"

Available variables at __auxtrace_mmap__read:38
@<__auxtrace_mmap__read+488>

(unknown_type) data1
(unknown_type) data2
_Bool snapshot
int kernel_is_64_bit
process_auxtrace_t fn
size_t head_off
size_t len1
size_t len2
size_t old_off
size_t padding
size_t size
size_t snapshot_size
struct auxtrace_mmap* mm
struct auxtrace_record* itr
struct mmap* map
struct perf_tool* tool
u64 head
u64 offset
u64 old
u64 ref
union perf_event ev
unsigned char* data

@<__auxtrace_mmap__read+500>
(unknown_type) data1
(unknown_type) data2
_Bool snapshot
int kernel_is_64_bit
process_auxtrace_t fn
size_t head_off
size_t len1
size_t len2
size_t old_off
size_t padding
size_t size
size_t snapshot_size
struct auxtrace_mmap* mm
struct auxtrace_record* itr
struct mmap* map
struct perf_tool* tool
u64 head
u64 offset
u64 old
u64 ref
union perf_event ev
unsigned char* data

It’s a bit suprising that the tool dumps out two different offsets (one is +488
and another is +500) for line 38, with the associated variables for each offset.
Due to line 38 having two conditions checking compiled with multiple branch
instructions, adding a probe for this line will automatically inject tracepoints

16

for all relevant offsets.
As a side topic, when you attempt to show variables for a probe point

in an inline function, it’s also possible to output multiple probe points. This
is because an inline function can be compiled into different functions, the
functions plus offset will be displayed in this case.

Instead of using ’function_name:line_number’, we can use the format
’function_name+offset’ to specify an accurate probe point. Here, we select
the offset 488 for tracing. Therefore, the adding probe command is:

Listing 28: Adding probe in __auxtrace_mmap__read() with ’perf probe’
perf probe -x /mnt/linux-kernel/tools/perf/perf --add "__auxtrace_mmap__read+488

head_off=head_off old_off=old_off size=size"
Added new event:
probe_perf:__auxtrace_mmap__read (on __auxtrace_mmap__read+488 in /mnt/linux-kernel/

tools/perf/perf with head_off=head_off old_off=old_off size=size)

You can now use it in all perf tools, such as:

perf record -e probe_perf:__auxtrace_mmap__read -aR sleep 1

Tracing with the perf

After setting up probes, now we need to consume these tracepoints. Let’s
begin by reproducing the steps via the tracing virtual file system.

Listing 29: Tracing with ’perf probe’
Change to tracing folder
cd /sys/kernel/debug/tracing/

Enable the kprobe tracepoint
echo 1 > events/probe/perf_aux_output_end_L31/enable

Enable the user space tracepoint
echo 1 > events/probe_perf/__auxtrace_mmap__read/enable

Start tracing
echo 1 > tracing_on

Run test
perf record -e cs_etm// -- ls

Stop tracing
echo 0 > tracing_on

Dump tracing data
cat trace
tracer: nop
#
entries-in-buffer/entries-written: 6/6 #P:6
#
_-----=> irqs-off/BH-disabled
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / _-=> migrate-disable
|||| / delay
TASK-PID CPU# ||||| TIMESTAMP FUNCTION
| | | ||||| | |

ls-4889 [005] d..3. 50585.840092: perf_aux_output_end_L31: (
perf_aux_output_end+0x4c/0x138) old_head=0x0 new_head=0xe4cd0 size=0
xe4cd0

17

ls-4889 [005] d..3. 50585.841170: perf_aux_output_end_L31: (
perf_aux_output_end+0x4c/0x138) old_head=0xe4cd0 new_head=0xf0750
size=0xba80

ls-4889 [005] d..3. 50585.843651: perf_aux_output_end_L31: (
perf_aux_output_end+0x4c/0x138) old_head=0xf0750 new_head=0x100eb0
size=0x10760

ls-4889 [005] d..3. 50585.847108: perf_aux_output_end_L31: (
perf_aux_output_end+0x4c/0x138) old_head=0x100eb0 new_head=0x11c870
size=0x1b9c0

ls-4889 [005] d..1. 50585.857568: perf_aux_output_end_L31: (
perf_aux_output_end+0x4c/0x138) old_head=0x11c870 new_head=0x219810
size=0xfcfa0

perf-4888 [002] DNZff 50585.857721: __auxtrace_mmap__read: (0xaaaab03279e0
) head_off=0x219810 old_off=0x0 size=0x219810

In fact, with perf, it’s no need to directly use ftrace knobs anymore. The
perf tool can handle everything, including recording and reporting the trace
data. We can use perf to debug perf!

Using perf to debug perf involves two perf programs running. In the
current case, the first perf program opens cs_etm PMU event and records
Arm CoreSight hardware trace data for program ls. The command is ’perf
record -o perf.data.etm -e cs_etm// –- ls’. Note that ’–-’ is a separa-
tor followed by a traced program and its arguments (if there are any).

The second perf program is for debugging purpose. It opens the pre-
configured probes and takes the first perf program as its debugging target.
The two perf programs are separated by another separator ’–-’.

By default, perf saves recording into the file ’perf.data’ if no file name
is given. But, if two perf programs use the same file for saving trace data, it
can cause mess. Therefore, we specify distinct output file names using the
’-o’ option for each perf program. One is ’perf.data.etm’ for the session
related to the cs_etm PMU event, and the another is ’perf.data.dbg’ for the
debugging program.

With the above explanation, the following command kicks off the both
perf programs in one go:

Listing 30: Perf command for tracing another perf program
perf record -o perf.data.dbg -e probe:perf_aux_output_end_L31 \

-e probe_perf:__auxtrace_mmap__read -- \
perf record -o perf.data.etm -e cs_etm// -- ls

After recording, the ’perf script’ command can help us print out the
trace data. It outputs the details for the events, as shown below, in the same
format as ftrace dumping.

Listing 31: Report tracing logs with ’perf script’
perf script -i perf.data.dbg

ls 10102 [000] 54342.677011: probe:perf_aux_output_end_L31: (
ffff8000802a0f2c) old_head=0x0 new_head=0xead30 size=0xead30

ls 10102 [001] 54342.677796: probe:perf_aux_output_end_L31: (
ffff8000802a0f2c) old_head=0x0 new_head=0xbb90 size=0xbb90

ls 10102 [001] 54342.680020: probe:perf_aux_output_end_L31: (
ffff8000802a0f2c) old_head=0xbb90 new_head=0x1bda0 size=0x10210

ls 10102 [003] 54342.686812: probe:perf_aux_output_end_L31: (
ffff8000802a0f2c) old_head=0x0 new_head=0x1c990 size=0x1c990

ls 10102 [003] 54342.695337: probe:perf_aux_output_end_L31: (
ffff8000802a0f2c) old_head=0x1c990 new_head=0x9cb40 size=0x801b0

ls 10102 [003] 54342.698274: probe:perf_aux_output_end_L31: (
ffff8000802a0f2c) old_head=0x9cb40 new_head=0x1095f0 size=0x6cab0

18

perf 10100 [001] 54342.698429: probe_perf:__auxtrace_mmap__read: (
aaaad68236fc) head_off=0xead30 old_off=0x0 size=0xead30

perf 10100 [001] 54342.701141: probe_perf:__auxtrace_mmap__read: (
aaaad68236fc) head_off=0x1bda0 old_off=0x0 size=0x1bda0

perf 10100 [001] 54342.701500: probe_perf:__auxtrace_mmap__read: (
aaaad68236fc) head_off=0x1095f0 old_off=0x0 size=0x1095f0

Sometimes, we may be curious about how a function is invoked in a
flow. We can append the configuration ’call-graph=fp’ for a tracepoint in the
recording. When the tracepoint is triggered, its call graph will be captured as
well. The perf record command is updated for call stack tracing:

Listing 32: Perf record with tracing call stack
perf record -o perf.data.dbg -e probe:perf_aux_output_end_L31/call-graph=fp/ \

-e probe_perf:__auxtrace_mmap__read/call-graph=fp/ -- \
perf record -o perf.data.etm -e cs_etm// -- ls

We can then use the ’perf script’ command to review the trace data
again. This time, call chains of the traced functions are included. Since perf
collects all objects, including the executables and libraries in the user space and
the Linux image, it has the capability to parse symbols for the entire system.
That’s why, when reviewing the call chain of perf_aux_output_end() in the
log below, you can see that the call originates from the user space. The process
ls then attempts to perform scheduling, and during the context switching
out, the Arm CoreSight trace data is recorded. This provides insights into the
execution flow with covering the kernel and user space.

Listing 33: Perf tracing logs with call stack
perf script -i perf.data.dbg

ls 10028 [003] 53664.368328: probe:perf_aux_output_end_L31: (ffff8000802a0f2c)
old_head=0x0 new_head=0xed100 size=0xed100

ffff8000802a0f2c perf_aux_output_end+0x4c (vmlinux)
ffff800081052240 etm_event_stop+0x140 (vmlinux)
ffff8000810522d4 etm_event_del+0x1c (vmlinux)
ffff800080294384 event_sched_out+0x9c (vmlinux)
ffff800080294574 group_sched_out+0x5c (vmlinux)
ffff800080294930 __pmu_ctx_sched_out+0xe8 (vmlinux)
ffff800080294a48 ctx_sched_out+0xc8 (vmlinux)
ffff800080294b50 task_ctx_sched_out+0x38 (vmlinux)
ffff800080296a98 __perf_event_task_sched_out+0x1a0 (vmlinux)
ffff8000812f40a0 __schedule+0x400 (vmlinux)
ffff8000812f4814 schedule+0x3c (vmlinux)
ffff80008126f330 rpc_wait_bit_killable+0x20 (vmlinux)
ffff8000812f5038 __wait_on_bit+0x58 (vmlinux)
ffff8000812f51ec out_of_line_wait_on_bit+0x8c (vmlinux)
ffff800081279020 __rpc_execute+0x120 (vmlinux)
ffff8000812797d4 rpc_execute+0x164 (vmlinux)
ffff80008125971c rpc_run_task+0x12c (vmlinux)
ffff800080537fb4 nfs4_do_call_sync+0x7c (vmlinux)
ffff8000805380f8 _nfs4_proc_getattr+0xf0 (vmlinux)
ffff80008054116c nfs4_proc_getattr+0x7c (vmlinux)
ffff80008050e944 __nfs_revalidate_inode+0xe4 (vmlinux)
ffff800080502cdc nfs_lookup_verify_inode+0x94 (vmlinux)
ffff800080502d64 nfs_weak_revalidate+0x5c (vmlinux)
ffff8000803a3b94 complete_walk+0x9c (vmlinux)
ffff8000803a8794 path_openat+0x82c (vmlinux)
ffff8000803a9834 do_filp_open+0xa4 (vmlinux)
ffff80008038f948 do_sys_openat2+0xc8 (vmlinux)
ffff80008038fccc __arm64_sys_openat+0x6c (vmlinux)
ffff800080029a30 invoke_syscall+0x50 (vmlinux)
ffff800080029bd0 el0_svc_common.constprop.0+0xc8 (vmlinux)

19

ffff800080029c1c do_el0_svc+0x24 (vmlinux)
ffff8000812ec134 el0_svc+0x34 (vmlinux)
ffff8000812ec568 el0t_64_sync_handler+0x100 (vmlinux)
ffff800080011d50 el0t_64_sync+0x190 (vmlinux)

ffff880b5c70 __open64_nocancel+0x48 (/usr/lib/aarch64-linux-gnu/libc-2.28.so
)

ffff8808c824 __opendir+0x1c (/usr/lib/aarch64-linux-gnu/libc-2.28.so)
aaaacaa8a4d8 [unknown] (/usr/bin/ls)
aaaacaa843f0 [unknown] (/usr/bin/ls)
ffff8800fd24 __libc_start_main+0xe4 (/usr/lib/aarch64-linux-gnu/libc-2.28.so

)
aaaacaa8584c [unknown] (/usr/bin/ls)

...

perf 10026 [001] 53664.385318: probe_perf:__auxtrace_mmap__read: (aaaae2d036fc)
head_off=0x21fef0 old_off=0x0 size=0x21fef0

aaaae2d036fc __auxtrace_mmap__read+0x1e8 (/mnt/linux-kernel/tools/perf/perf)
aaaae2d03a44 auxtrace_mmap__read+0x48 (/mnt/linux-kernel/tools/perf/perf)
aaaae2b141bc record__auxtrace_mmap_read+0x40 (/mnt/linux-kernel/tools/perf/

perf)
aaaae2b16e98 record__mmap_read_evlist+0x274 (/mnt/linux-kernel/tools/perf/

perf)
aaaae2b16fb4 record__mmap_read_all+0x40 (/mnt/linux-kernel/tools/perf/perf)
aaaae2b19ff4 __cmd_record+0x9ac (/mnt/linux-kernel/tools/perf/perf)
aaaae2b1dc0c cmd_record+0xb78 (/mnt/linux-kernel/tools/perf/perf)
aaaae2c04f90 run_builtin+0x110 (/mnt/linux-kernel/tools/perf/perf)
aaaae2c0523c handle_internal_command+0xf4 (/mnt/linux-kernel/tools/perf/perf

)
aaaae2c053f4 run_argv+0x40 (/mnt/linux-kernel/tools/perf/perf)
aaaae2c0570c main+0x248 (/mnt/linux-kernel/tools/perf/perf)
ffff9d4aed24 __libc_start_main+0xe4 (/usr/lib/aarch64-linux-gnu/libc-2.28.so

)
aaaae2afd7c4 _start+0x34 (/mnt/linux-kernel/tools/perf/perf)

When you’ve read to this point, I hope you now have a brief understanding
of how to use perf for tracing and debugging, and you might be interested in
exploring more with perf, but I’ll stop here ;)

Acknowledgement

I am grateful for the chance to write this article, using a small case to chain up
several important Linux debugging tools.

I believe many words in this article are borrowed from Daniel Thompson
during the time when I worked on the Linaro training project. Without
Daniel’s guidance, I might never have had the chance to establish a systemic
view for Linux kernel debugging. I hope to record some of the ideas and
insights I learned in my conversations with Daniel.

I also appreciate Mathieu Poirier for providing help when I submitted
my first patch to Arm CoreSight. Mathieu encouraged me to keep going and
explore more development in integrating Arm CoreSight with perf. This led
me to the perf development, where I find much fun!

20

https://www.linaro.org/services/hands-on-training/

